

SUPRA SERVER PDM

System Administration Guide
(UNIX)

P25-0132-46

SUPRA® Server PDM System Administration Guide (UNIX)

Publication Number P25-0132-46

 1989–2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3731
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM System Administration Guide (UNIX),
P25-0132-46, is dated January 15, 2002. This document supports
Release 1.3 of SUPRA Server PDM in UNIX environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn.: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn.: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book ix
Using this document... ix

Document organization ..x
Revisions to this manual ... xi
Conventions .. xiii

SUPRA Server documentation series ... xv

Overview of SUPRA Server 17
The Physical Data Manager ..18
The Directory...20
MANTIS...22

Setting up UNIX to run SUPRA Server 23
Modifying UNIX system parameters..24

Modifying system parameters for shared memory...25
Modifying system parameters for semaphores ..30
Modifying system parameters for files..32
Modifying system parameters for message queues33

Installing SUPRA Server PDM ..34
Defining environment variables...37
Implementing logical names..38

Creating logical name tables..44
Defining logical names ...45
Displaying logical names..47
Displaying logical name values ..49
Deleting logical names ...51
Modifying logical names...52

Starting daemon processes ..53
Removing wasted resources (csitidy) ...55
Maintaining user privileges (csichkpriv) ..56

Understanding user privileges..57
Creating and modifying the privilege file ..58

Connecting to a remote PDM—client/server (csistr) ...63

System Administration Guide v

Enabling communication between processes and nominated operators (csioper) 65
Writing SUPRA Server PDM user exits .. 66

Internal user exits .. 66
External user exits ... 68

Setting up the Directory 69
Describing the Directory database.. 70

Estimating Directory data set sizes.. 71
Setting up Directory user names ... 72

Changing the definition of the Directory database.. 73
Modifying the Directory ... 74
Modifying the Directory data sets.. 77

Using Fast utilities on UDD files .. 78
Using DBA utilities on UDD files .. 80

Initiating the SUPRA Server Physical Data Manager 81
How to enable the multitask SUPRA PDM ... 82

Manual PDM initiation.. 82
Automatic PDM initiation.. 83
Logical names.. 84

Creating a PDM initiation script .. 88
Using a database prefix .. 94
Creating a PDM input file.. 96
Enabling/disabling automatic PDM startup (CSI_AUTOSTART).............................. 107
Defining the logical name for the PDM (CSI_PDMID) .. 108
Defining the logical name for a multiple systemwide PDM (CSI_SYSPDMID)......... 110
Understanding automatic PDM startup... 111
Single-task PDM... 117

Concurrent mode... 117
Stand-alone mode ... 118

Communicating with the SUPRA Server PDM 119
Entering PDM operator commands .. 120
Controlling the PDM with operator commands ... 122

Activating an index (ACTIVATE).. 123
Deactivating an index (DEACTIVATE) .. 125
Disabling a database (DISABLE)... 127
Displaying a database (DISPLAY) ... 130
Dumping a database (DUMPSLF)... 133
Enabling a database (ENABLE) .. 135
Populating an index (POPULATE)... 137
Printing PDM memory (PRINT) ... 139
Setting a database to READONLY access (READONLY)........................... 140
Shutting down a database (SHUTDOWN) .. 142

Contents

vi P25-0132-46

Unloading a database (UNLOAD)..144
Setting a database to UPDATE access (UPDATE)146

Communicating with SUPRA Server PDM using csiopcom......................................148
Writing your own interface to SUPRA Server PDM...154
Restricting usage of PDM commands using the csioauth program156
Communicating with the PDM using the csireply command160

Setting up the csireply command ...161
Using the csireply command..163

Tuning your database 165
System tuning..166
Tuning your physical database..167

Accessing files on a network..167
Optimizing primary record retrieval ..167
Avoiding fragmented files...169
Avoiding fragmented chains...170
Using primary data sets ...170
Using related data sets ..171
Managing record holding..175
Defining logical units of work..179
Managing buffers ...181
Improving database performance with buffers...183
Tuning PDM process memory ...186
CONTROL: Manufacturing tuning considerations..187
Improving database performance with indices...188

Designing application programs..190
Record holding ...190
Managing record holding..191
Recovering from a deadly embrace ...193
Optimizing the frequency of commits...193
Understanding read-ahead buffering ...194

Controlling data item lists ..198

Using the UNIX online Help facility 199
Entering the csihelp command..200
Using csimkhlp to create a Help file and Help index...203

Database migration 205
Migrating into SUPRA Server for UNIX...207
Migrating from SUPRA Server for UNIX ...208
Generating a DDL file..209
Using the DDL Load Facility..210

Signing on to csiddlload ...212
Loading the DDL file...213

Contents

System Administration Guide vii

Checking csiddlload error conditions... 219
Sample DDL input file .. 220

Compiling database description.. 226
Formatting data sets ... 226
Adding records.. 226

System Administration utilities 227
csistats.. 228

How the utility works .. 228
How to execute the utility... 229

dbstat.sh ... 233
How the utility works .. 233
How to execute the utility... 234

pdmstats.sh .. 237
How the utility works .. 237
How to execute the utility... 238

csishoheld... 244
How the utility works .. 244
How to execute the utility... 244

csidmpanl.. 247
How the utility works .. 247
How to execute the utility... 248

Example user exits 249
COBOL user exits... 249

COBOL user exit 1... 250
COBOL user exit 2... 251
COBOL command file to compile and link the exits 253

FORTRAN user exit.. 254
FORTRAN user exit... 254
FORTRAN command file to compile and link the exit 256

PDM statistics output 257
Task statistics ... 257
File statistics ... 258
Database statistics.. 261

Example mailbox read program 263

Index 265

Contents

viii P25-0132-46

About this book

Using this document
This manual describes:

♦ SUPRA Server components and related products

♦ How to implement the logical names required to set up your UNIX
environment to run SUPRA Server

♦ Allowable changes to the SUPRA Directory and how to make those
changes

♦ How to implement the logical names and other steps required to
initiate the PDM

♦ How to communicate with the PDM using the PDM operator interface

♦ Information that will help you get the best performance from your
SUPRA Server database

♦ How to use online Help for SUPRA Server

♦ How to use database migration instructions

The appendixes provide sample user exits, description of PDM statistics
output, and an example mailbox reading program.

System Administration Guide ix

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of SUPRA Server
Describes SUPRA Server, the Physical Data Manager, the directory,
and MANTIS.

Chapter 2—Setting up UNIX to run SUPRA Server
Describes how to install SUPRA Server PDM, modify UNIX system
parameters, define environment variables, start daemon processes,
and write PDM user exits.

Chapter 3—Setting up the Directory
Describes how to set up and maintain the Directory.

Chapter 4—Initiating the SUPRA Server Physical Data Manager
Describes how to enable the multitask SUPRA PDM, create an
initiation script, use a prefix, create a PDM input file, define logical
names, and use automatic startup.

Chapter 5—Communicating with the SUPRA Server PDM
Describes how to communicate with and write your own interface to
the PDM.

Chapter 6—Tuning your database
Describes how to tune the database, design application programs,
and control data item lists.

Chapter 7—Using the UNIX online Help facility
Describes how to enter the csihelp command, and how to create a
Help file and Help index.

Chapter 8—Database migration
Describes how to migrate into and out of SUPRA Server, generate a
DDL file, format data sets, and add records.

Chapter 9—System Administration utilities
Describes utilities used by the System Administrator to assist in
tuning databases, PDM systems, and diagnose problems.

Appendix A—Example user exits
Presents example user exits written in COBOL and FORTRAN.

Appendix B—PDM statistics output
Describes the statistics written to the log file when you specify
STATISTICS=Y in the PDM input file.

Appendix C—Example mailbox read program
Presents a C program to read the PDM messages from a named
pipe.

Index

About this book

x P25-0132-46

Revisions to this manual
The following changes have been included for this release:

♦ A bullet discussing automatic read-ahead buffering (see “The
Physical Data Manager” on page 18)

♦ An additional semaphore set identifier (see the table under “Modifying
system parameters for semaphores” on page 30):

- Internal PDM lock of relative files with LOAD-LIMIT=0

♦ Information about multitask PDM (see “Installing SUPRA Server
PDM” on page 34 and “Initiating the SUPRA Server Physical Data
Manager” on page 81)

♦ Additional logical names (see the table under “Implementing logical
names” on page 38):

- CSI_BAK

- CSI_BATCH_CONCURRENT

- CSI_READAHEAD

- CSI_READAHEAD_STATISTICS

♦ Two new parameters, READAHEAD_THRESHOLD1 and
READAHEAD_THRESHOLD2, have been added to the PDM input
file. See “Creating a PDM input file” on page 96.

♦ Information about the UNIX KILL command (see “Starting daemon
processes” on page 53)

♦ Information about automatic PDM initiation (see “How to enable the
multitask SUPRA PDM” on page 82)

♦ The BATCHTHREADS parameter (see “Creating a PDM input file” on
page 96)

♦ Information about single-task PDM running in concurrent and stand-
alone modes (see “Single-task PDM” on page 117)

♦ The REDO and QUIT commands have been added to the section on
csiopcom commands on page 152

About this book

System Administration Guide xi

♦ A bullet discussing improving initial load performance (see “Managing
buffers” on page 181)

♦ Information about improving database performance with buffers (see
“Improving database performance with buffers” beginning on
page 183)

♦ Information about tuning PDM process memory (see “Tuning PDM
process memory” on page 186)

♦ Information about CONTROL:Manufacturing tuning considerations
(see “CONTROL: Manufacturing tuning considerations” on
page 187)

♦ Information about improving database performance with indices (see
“Improving database performance with indices” on page 188)

♦ Information about record holding (see “Record holding” on page 190)

♦ Information about understanding read-ahead buffering (see
“Understanding read-ahead buffering” on page 194)

About this book

xii P25-0132-46

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate one
of the following situations:

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by brackets
represent optional alternatives, one
of which can be selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items
represent alternatives, one of which
you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF









About this book

System Administration Guide xiii

Convention Description Example

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item can
be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

 In the UNIX operating environment,
keywords are case-sensitive, and
you must enter them exactly as
shown.

cp *.QAR /backup

Italics Indicate variables you replace with a
value, a column name, a file name,
and so on.
The example indicates that you
must substitute the name of a table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a keystroke. Multiple
keystrokes are hyphenated.

ALT-TAB

About this book

xiv P25-0132-46

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including DBA Functions, DBAID,
precompilers, SPECTRA, and MANTIS. The following list shows the
manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed.

Getting started

♦ SUPRA Server PDM UNIX Installation Guide, P25-1008

♦ SUPRA Server PDM UNIX Tutorial, T25-2262

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(PDM/RDM Support for UNIX & VMS), P25-0022

Database administration tasks

♦ SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260

♦ SUPRA Server PDM System Administration Guide (UNIX),
P25-0132*

♦ SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220**

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

About this book

System Administration Guide xv

Application programming tasks

♦ SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240

♦ SUPRA Server PDM System Administration Guide (UNIX),
P25-0132*

♦ MANTIS Planning Guide, P25-1315**

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

♦ SPECTRA User’s Guide, P26-9561**

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

Educational material is available from your regional Cincom education
department.

About this book

xvi P25-0132-46

1
Overview of SUPRA Server

SUPRA Server is an interactive database system which allows you to use
advanced features for control of data resources and high programming
productivity. SUPRA Server accommodates the varying data processing
needs of its users by supporting the following integrated components and
related products:

Component/related
product

Function

Physical Data Manager
(PDM)

Recovery
Automatic restart

Directory DBA functions
Fast utilities
Database Verify utility
Batch validate, compile and print
Format data files
Format, populate and check indices

MANTIS Application Development

System Administration Guide 17

The Physical Data Manager
The Physical Data Manager (PDM) controls the storage of and access to
data in user databases and is the underlying control method that all other
components use to access physical data. Application programmers write
programs using Physical Data Manipulation Language (PDML) to access
the PDM and directly manipulate data held on SUPRA Server databases.

SUPRA PDM runs in multitask mode or single-task mode:

♦ The multitask SUPRA PDM runs as multiple detached processes. In
this mode, application programs coded with PDML call the database
access program (csidatbas.o or csidatbas.sl), which provides access
to SUPRA PDM through shared memory or TCP/IP messages.

♦ The single-task SUPRA PDM runs in the application process. In this
mode, application programs coded with PDML call the database
access program (csibatbas.o), which provides high-speed access to
the SUPRA PDM logic directly via a call (see “Installing SUPRA
Server PDM” on page 34 and SUPRA Server PDM Programming
Guide (UNIX & VMS), P25-0240).

Regardless of the access method, the PDM provides high performance
through the following additional features:

♦ Recovery methods, including:

- Task level recovery. Resets the database to the last successful
commit point after a system or task failure.

- System level recovery. Restores the database to its state just
prior to a failure by reapplying logged after-images.

- Shadow recording. Duplicates each data set write on a shadow
data set, switches to duplicate data sets when a failure occurs.

 Refer to the SUPRA Server PDM Database Administration Guide
(UNIX & VMS), P25-2260, for more information about recovery
methods.

Chapter 1 Overview of SUPRA Server

18 P25-0132-46

♦ Network support. The PDM provides Network Support for each
database, provided you define a preferred machine list. SUPRA
Server Network Support enables a task from one machine to access
a database running on another machine where both machines form
part of the same network. “Initiating the SUPRA Server Physical Data
Manager” on page 81 describes how to set up your PDM to start on
any machine in a network in descending order of preference. This
order of preference depends on the order of machines as specified in
the preferred machine list.

♦ Automatic restart. Automatic restart ensures that your PDM will still
run even if the machine on which it is currently running fails. The first
task to attempt to access a database running in the failed PDM
initiates the PDM in the first available machine on its preferred
machine list. “Understanding automatic PDM startup” on page 111
describes automatic restart.

♦ Automatic read-ahead buffering. Automatic read-ahead buffering
provides an invisible performance boost for sequential and serial
reads executed against the same file. Read-ahead buffers are
provided for the RDNXT, READV/READR, and READX PDML
functions. This feature can provide dramatic performance
improvements when applications read large numbers of records
using the above functions.

The Physical Data Manager

System Administration Guide 19

The Directory
The SUPRA Directory is the central point for all SUPRA Server
components. It supplies all the system information and all the data
descriptions required by the PDM. Although it does not maintain or
contain user physical data (the PDM fulfills this function), it provides a
common repository of what data exists and where. “Setting up the
Directory” on page 69 describes how to set up and modify the Directory.
The DBA accesses the Directory to define and maintain database
descriptions using these facilities:

♦ DBA functions. Database administrators use the DBA functions to
define and maintain:

- The Directory itself

- Database descriptions stored on the Directory

 In addition, the Directory controls:

- Database users

- Access rights

- Recovery functions

- DBA utilities

 Refer to the SUPRA Server PDM Database Administration Guide
(UNIX & VMS), P25-2260, for details of how to use the DBA
functions.

Chapter 1 Overview of SUPRA Server

20 P25-0132-46

♦ Fast utilities. The DBA or System Administrator uses Fast utilities to
make physical changes to databases, including the Directory
database SUPRAD. You can use Fast utilities both online and in
batch. Refer to the SUPRA Server PDM Utilities Reference Manual
(UNIX & VMS), P25-6220, for details of both Fast utilities and DBA
utilities.

♦ Batch validate, compile, and print. The batch validate, compile,
and print program, called csmcombat, is supplied with the DBA
validate, compile, and print functions. The DBA can invoke
csmcombat from within SUPRA DBA or from the command level.
Refer to the SUPRA Server PDM Database Administration Guide
(UNIX & VMS), P25-2260, for more information.

♦ Format data sets. The format program, called cstufmt, runs from
SUPRA DBA or from the command level. Format creates and
formats the physical files that will hold the data. Refer to the SUPRA
Server PDM Database Administration Guide (UNIX & VMS),
P25-2260, for more information.

The Directory

System Administration Guide 21

MANTIS
MANTIS is a programming language with facilities to design scenarios,
files, screens, prompters, and interfaces. The MANTIS programmer can
access all SUPRA Server components. MANTIS offers high
programming productivity and fourth-generation prototyping facilities. In
addition, MANTIS applications are portable across hardware platforms.
Refer to MANTIS documentation for more information about using
MANTIS.

Chapter 1 Overview of SUPRA Server

22 P25-0132-46

2
Setting up UNIX to run SUPRA Server

Setting up UNIX to run SUPRA Server involves the following tasks:

♦ Modifying UNIX system parameters to accommodate very numerous
or large databases (“Modifying UNIX system parameters” on
page 24)

♦ Installing SUPRA Server PDM (“Installing SUPRA Server PDM” on
page 34)

♦ Defining environment variables (“Defining environment variables” on
page 37)

♦ Implementing the logical names needed to run SUPRA Server
(“Implementing logical names” on page 38)

♦ Starting daemon processes (“Starting daemon processes” on
page 53)

♦ Writing SUPRA Server PDM user exits (“Writing SUPRA Server PDM
user exits” on page 66)

System Administration Guide 23

Modifying UNIX system parameters
To run SUPRA Server on your UNIX system you will need to check and
possibly modify your system parameters. Since the procedures to modify
UNIX system parameters can vary from system to system, consult your
UNIX documentation set for the modification procedures.

You may need to modify these system parameters:

♦ Shared Memory

♦ Semaphores

♦ Files

♦ Message Queues

Use the byte requirements in this section to calculate the size you will
need for the above parameters. The requirements given represent the
bytes per database, PDM, or file system that you use.

UNIX system parameters are typically set at low values; therefore, do not
be alarmed if you have to set the parameters at values that are
significantly higher than those supplied with your system.

Chapter 2 Setting up UNIX to run SUPRA Server

24 P25-0132-46

Modifying system parameters for shared memory
SUPRA Server relies on shared memory for communications, logical
names, and shared data. In order to accommodate the shared memory
used by SUPRA Server, the following shared memory parameters will
probably require changing:

♦ SHMMAX. Maximum shared memory size

♦ SHMMNI. Maximum number of shared memory identifiers in the
system

♦ SHMSEG. Maximum number of shared memory segment attaches
per process

The names of the parameters above may vary among UNIX systems.
Check your UNIX documentation for the correct parameter names for
your particular system.

When the SUPRA PDM is started, it creates a shared memory segment
containing all its constants plus its application communication areas.
Each database loaded occupies two shared memory segments. Of the
two created, one can be very large, depending on the size of the
database in use (number of files, elements, etc.). In order to
accommodate this size, it may be necessary to set maximum shared
memory size (SHMMAX) to values in the order of megabytes. The
dictionary database SUPRAD, for instance, creates a shared memory
segment of 200K. If you plan on using a large number of databases, you
may need to change the maximum number of shared memory segments
allowed in the system (SHMMNI).

SUPRA Server has four different types of shared memory segments:

♦ Logical name table and directory table segments

♦ Global PDM data and message area segments

♦ Segments that the database occupies

♦ Tidy Daemon segment

Modifying UNIX system parameters

System Administration Guide 25

The following information shows each type of memory segment and the
requirements for each. Use these requirements to calculate the sizes you
will need for the SHMMAX, SHMMNI, and SHMSEG parameters.

♦ Logical name table and directory table segments. The PDM
creates a shared memory segment for each logical name table and
directory table in the system. The number of logical name tables
created is as follows:

Table Number of tables created
System table One per system
System directory table One per system
Group table One per group
Process table One per parent process (process

setting the CSIPID environment
variable)

Process directory table One per parent process (process
setting the CSIPID environment
variable)

User table One per user-defined table created

 Each logical name table requires the following memory:

40 byte header record + 336 bytes per logical name table entry
(default is 50 entries)

 The size of each table is rounded to the system page size. For
example, if the system page size was 4096 bytes and a logical name
table of 50 entries is created, its size would be 40 + (50 * 336). The
resulting nearest page boundary is 16840; rounded to the nearest
page is 20,480 bytes.

Chapter 2 Setting up UNIX to run SUPRA Server

26 P25-0132-46

♦ Global PDM data and message area segments. The PDM creates
a shared memory segment to contain global PDM data plus the
message areas used to communicate with the applications. The size
of this area can be calculated as follows:

 5396 bytes for global PDM data +

 (1344 + value of MAXDATA) page aligned *

 (MAXTASKS + 5) + (2 * MAXTASKS + 1) * 16

 The size of this area is then aligned to a page boundary; for example,
if page size = 4096, MAXTASKS = 10 and MAXDATA = 8192, then
the size of the area is:

 5396 + (1344 + 8192) page aligned * (15) + (21) * 16

 = 5396 + 184320 + 336

 = 190052 bytes

Modifying UNIX system parameters

System Administration Guide 27

♦ Segments that the database occupies. SUPRA Server has two
shared memory segments per database loaded. The sizes of these
segments are shown in the following two tables:

Contents in segment 1 Number of bytes required
Header 1100
Database details 992
Data sets 292 * (number-of-data-sets)
Task log 284
System log 284
Elements (Base elements
are duplicated for each
record code)

48 * (total-number-of-elements)

Linkpaths 20 * (total-number-of-linkpaths)
Record code table 4 * (total-number-of-record-codes)
Record hold table 80 * (Max-Held-Records + 1)
Tasklog Sector map
header

20 (used even if no Tasklog
defined)

Tasklog Sector map 24 * (Max-Update-Tasks)
Tasklog Sector group list 12 * (Max-Update-Tasks)
Task table 336 * (Max-Tasks + 1)
Task schema 20 * (number-of-data-sets) *

(Max-Tasks)
CCR buffers 20 * ((5 *

number-of-related-data-sets or
MAX-Tasks whichever is greater)
+ 32

Including extents for Task
and System logs (double if
shadowing)

112 * (total-number-of-file extents)

Buffers 32 * (number-of-buffers) + 511
Each buffer defined 104 + (buffer-size * buffer-copies)

Chapter 2 Setting up UNIX to run SUPRA Server

28 P25-0132-46

Contents in segment 2 Number of bytes required
Function backout table MAXTHREADS * 40 *

(2*max-linkpaths-in-a-data-set + 1)
Linkpath table MAXTHREADS * 48 *

(max-linkpaths-in-a-data-set + 8)
Thread context table MAXTHREADS * 192
Record work areas MAXTHREADS * 2 *

(max-record-size-in-database)
Tasklog buffers MAXTHREADS * 4 *

(Tasklog-block- size) + PAGESIZE
- 1

Tasklog buffer update
table

MAXTHREADS * ((96 +
number-buffers
+(number-related-data-sets * 5)
+number-of-files + 31) / 2 * 4)

File open tables (including
Task and System Logs)

MAXTHREADS * 80 *
(number-of-data-sets)

Thread process ID table MAXTHREADS * 4

♦ Tidy Daemon segment. The tidy Daemon process creates a shared
memory segment. The initial size of this segment will be 256 * 275 +
24 bytes (rounded to a page boundary).

Modifying UNIX system parameters

System Administration Guide 29

Modifying system parameters for semaphores
SUPRA Server uses semaphores for the majority of its internal locking,
synchronization, and task communications. In order to accommodate the
semaphores SUPRA Server uses, you may have to change the following
system parameters:

♦ SEMMNI. Number of semaphore identifiers

♦ SEMMNS. Maximum number of semaphores

♦ SEMMSL. Maximum semaphores per set

♦ SEMMNU. Maximum number of semaphore UNDO structures in the
system.

SUPRA Server uses semaphore UNDO structures for most semaphore
operations. The SEMMNU system parameter should be set to
accommodate at least the total number of semaphores in all SUPRA
Server systems. Use the table on the following page to determine the
number of semaphores used by a SUPRA Server system. Remember, a
SUPRA Server system can have many databases loaded.

The names of the parameters above may vary among UNIX systems.
Check your UNIX documentation for the correct parameter names for
your particular system. In addition, the number of maximum semaphores
per set may be a fixed value.

A minimum of 12 semaphores will be generated. The actual number will
expand depending on the number of tasks using the SUPRA PDM and
the number of buffer pools defined in a given dbmod. Internally, SUPRA
Server uses semaphore sets with a size of 25 (25 semaphores per set).
This value may be modified by defining the logical name SEMMSL to be
the set size desired (csideflog -g SEMMSL 50). SUPRA Server will create
a file for each of the semaphore sets so it can obtain a unique
semaphore ID. In order to accommodate this size, you may need to
modify the values for the maximum number of semaphore identifiers
(SEMMNI) and the maximum number of semaphores (SEMMNS).

Chapter 2 Setting up UNIX to run SUPRA Server

30 P25-0132-46

The following table shows semaphore set identifiers that SUPRA Server
uses. The total number of semaphores in use is the sum of the
semaphore set identifier sizes.

Semaphore purpose Set identifier size Considerations

Internal PDM global
locking

7

Local task
communication with
PDM

MAXTASKS + 5 If MAXTASKS + 5 exceeds
maximum semaphores per
identifier, then multiple identifiers
are used.

Internal PDM database
locking

11 + number of buffer
pools + 3

Per database loaded.

Internal PDM lock of
related files with
LOAD-LIMIT = 0

1 None.

Local PDM start 1
Remote PDM start 1 Per machine where remote PDM is

to run.
Logical Name locking 1 None.

Modifying UNIX system parameters

System Administration Guide 31

Modifying system parameters for files
Depending on the size of the databases in use and the number of
permitted threads in the PDM (MAXTHREADS), the PDM may have to
open a large number of files simultaneously. Under these conditions, you
may have to modify some of the file related system parameters to enable
the PDM to work correctly.

Consider the following:

♦ The NFILE parameter should be at least (the number of files in each
dbmod loaded in all PDM systems * the total number of
MAXTHREADS for all PDM systems)+(3 * the number of PDM
systems)

♦ The NINODE parameter should be equal to NFILE if possible

♦ The MAXFILES parameter should be at least (the maximum number
of files in all dbmods loaded by a single PDM system + 3)

SUPRA Server uses file names that are longer than the default maximum
in UNIX; therefore, it is necessary to turn on the long filenames option.

Chapter 2 Setting up UNIX to run SUPRA Server

32 P25-0132-46

Modifying system parameters for message queues
SUPRA Server uses message queues for communications:

♦ To and from the operator and privilege checking daemon processes

♦ From the database access program (DATBAS) to the multitask PDM
(csipdm)

You may need to change the following message queue system
parameters:

♦ MSGMAX. Maximum message size in bytes

♦ MSGMNI. Maximum number of message queue identifiers

♦ MSGMNB. Maximum number of bytes for a message queue

♦ MSGTQL. Number of message headers in the system

MSGTQL must be set high enough to accommodate at least 1 message
per task (MAXTASKS) for all SUPRA Server PDM systems.

The names of the parameters above may vary among UNIX systems.
Check your UNIX documentation for the correct system parameter
names.

For the privilege checking daemon (described in “Maintaining user
privileges (csichkpriv)” on page 56), each request sent to and from it is 32
bytes long. Therefore, unless you run many SUPRA Server applications
simultaneously, use the default system values. Only one message queue
is created for the privilege daemon, with each privilege check sending
one request on that queue.

Each PDM creates (if enabled) a message queue for the operator
daemon to communicate with it. Entire PDM operator commands are
sent to the PDM through the daemon. Therefore, it is unlikely any
changes to the size parameters need to be made. However, if you run
many PDMs and other applications that use message queues, you may
need to adjust the maximum number of message queue identifiers.

Each multitask PDM creates two message queues. The database access
program (DATBAS) uses the first queue
(systemname_DAPMSG_QUEUE) to initiate functions in the multitask
PDM (csipdm). The multitask PDM dispatch task uses the other queue
(systemname_dbmodname_THDMSG_QUEUE) to initiate functions in
the threads.

Modifying UNIX system parameters

System Administration Guide 33

Installing SUPRA Server PDM
SUPRA Server PDM for UNIX and the utilities provided with it manage
shared memory, semaphores, message queues, and file systems
provided by the UNIX operating system.

SUPRA Server PDM defines the following directories during installation.
For more information regarding installation, refer to the SUPRA Server
PDM UNIX Installation Guide, P25-1008.

♦ Install directory. The directory into which the release tape is
restored. Only one Install directory can be on a machine. The
Install directory may contain any number of SUPRA PDM releases.

♦ System directory. A directory corresponding to a SUPRA PDM
System. Each SUPRA PDM System has a 1- to 8-character name
and may be either a systemwide or groupwide system. There may be
any number of SUPRA PDM Systems on a machine. Each System
directory contains the necessary files and scripts to manage a
SUPRA PDM System.

♦ Resource directory. A directory used by a SUPRA PDM System to
manage UNIX resources. Each shared memory segment,
semaphore set, and message queue has a corresponding file in the
Resource directory which maps to the resource by producing the
unique key associated with the resource. One systemwide SUPRA
PDM System and multiple groupwide SUPRA PDM Systems may
share a single Resource directory. By defining multiple Resource
directories, you can support multiple systemwide SUPRA PDM
Systems.

♦ Directory directory. A directory which contains the SUPRA PDM
Directory database. The Directory database contains your database
definitions. The SUPRA PDM Database Administration Utility (csidba)
maintains it. The SUPRA PDM Database Administration Utility
compiles the database definitions defined in the SUPRA PDM
Directory database to produce a database definition module (dbmod)
for each database.

Chapter 2 Setting up UNIX to run SUPRA Server

34 P25-0132-46

SUPRA PDM relies on UNIX environment variables and SUPRA PDM
logical names to control the operating environment of a SUPRA PDM
System. You control the execution characteristics of SUPRA PDM by
defining values for the various environment variables and logical names
used by SUPRA PDM.

The UNIX environment variable CSIRESOURCES defines the path to the
Resource directory for a SUPRA PDM System. You must set the UNIX
environment variable CSIPID to a valid process ID. This variable defines
the process ID to be used for process-level logical name lookups. Each
UNIX user who accesses a SUPRA PDM System must have these
environment variables set.

You must define the SUPRA PDM logical name CSIPDMID as the name
of the SUPRA PDM System. If this logical name is defined in a group
table, the SUPRA PDM is groupwide. If the logical name is defined in a
system table, the SUPRA PDM is systemwide.

A complete list of SUPRA PDM logical names appears later in this
chapter.

The SUPRA PDM install scripts (s1_install, s1_system_setup, and
s1_user_setup) simplify and automate the definition of SUPRA PDM
Systems and the users who may access them. Refer to the SUPRA
Server PDM UNIX Installation Guide, P25-1008, for more details on
installing SUPRA PDM. The install scripts automatically create
customized scripts (pdm_startup and daemon_startup) and input files for
starting a SUPRA PDM System.

Each SUPRA PDM System requires several daemon processes to be
executed. These daemon processes do the following:

♦ Manage access privileges

♦ Clean up UNIX system resources for failed application and PDM
processes

♦ Establish communications with remote SUPRA PDM Systems on a
TCP/IP network

♦ Provide a command-driven operator interface

Installing SUPRA Server PDM

System Administration Guide 35

The pdm_startup script starts these daemons automatically. Alternatively,
the daemon_startup script is generated by the install scripts to initiate
only the daemons.

The multitask PDM may be started using the pdm_startup script, or if the
CSI_ AUTOSTART logical name is defined as YES, the first application
to execute a SINON PDML function will start it automatically.

The multitask SUPRA PDM runs as several daemon processes. The
parent process is called the Dispatcher. Its primary function is to monitor
the database access program queue for Physical Data Management
Language (PDML) requests produced by application program calls to the
database access program (DATBAS). Then, a second SUPRA PDM
process is created and is responsible for monitoring the application tasks
which are currently using a SUPRA PDM System. If an application task
fails without signing off of the database, this task signs off the application
task off dynamically and rolls back any updated database records. The
csipdm daemon creates these two SUPRA PDM processes automatically
(see “Initiating the SUPRA Server Physical Data Manager” on page 81).

When the first application task signs on to a database, the Dispatcher
task loads the database definition module (dbmod) into shared memory
and creates a number of SUPRA PDM processes. The number of
processes created depends on the value of the MAXTHREADS SUPRA
PDM input parameter. The SUPRA PDM input file parameters are
described in detail in this manual. Each dbmod loaded has this number of
processes created.

Chapter 2 Setting up UNIX to run SUPRA Server

36 P25-0132-46

Defining environment variables
You must define two environment variables for any process that needs to
use a component of SUPRA Server. You can define the environment
variables as part of the shell startup script, for example, the .profile for
the source shell. You should export the environment variables so they are
available to all child processes. The environment variables are as follows:

♦ CSIPID Equates to the process ID of the current process. This
environment variable is used by the SUPRA Server logical name
facilities. For example:
CSIPID = $$; export CSIPID

 You must define the CSIPID environment variable in the profile or
login file of each UNIX user who accesses a SUPRA PDM System. If
you use scripts running batch applications which access SUPRA
PDM, you must redefine this variable and the process logical names,
such as CSI_PREFIX, in the script. Otherwise, when the user exits
from the UNIX system (but the batch process stays active), the
csitidy daemon removes the process logical name table from the
system. Then, the batch application produces errors such as NMAC
or “File not found” because SUPRA PDM cannot resolve the process
logical names. See “Implementing logical names” on page 38 for
more information.

♦ CSIRESOURCES Equates to the path in which all SUPRA Server
resource files are to be created. Resource files are created by all
SUPRA Server components plus your application. For example:
CSIRESOURCES = /usr/acct/resource; export CSIRESOURCES

Defining environment variables

System Administration Guide 37

Implementing logical names
A logical name is a shorthand notation for representing a file
specification, a value, or another logical name. Logical names allow you
to keep programs and shell scripts independent of physical file locations,
and to dynamically pass data to applications. The program or shell script
will search and write to the logical name tables in a certain order unless
you specify otherwise.

You can restrict logical name tables to use by a single process, or you
can share them among many processes. The following logical name
tables are available:

Table Description
Process
table

Contains logical names that are only available to your process and its
children. When all processes with access to the table have been
deleted, the table itself is deleted, for example, it only exists for the
lifetime of the parent plus its children.

Group
table

Contains logical names that are only available to processes with the
same group (there is a separate group table for each group ID on the
system). Any process outside of the group does not have access to the
table unless it has root privileges. You must explicitly delete group
logical name tables and their logical names.

System
table

Contains logical names that are available to all processes on the
system. You must explicitly delete the system logical name table plus
its logical names.

User-
defined
tables

These tables are intended to support multiple systemwide PDMs. The
user defines the availability of the tables. A child process will inherit a
parent’s user-defined tables plus access to them. You must explicitly
delete user-defined logical name tables and their logical names.

Logical
name
directory
tables

Catalog logical name tables and define their search order. Logical
name directory tables are themselves logical name tables with catalogs
in the form of logical names, for example, there is a logical name for
each table in the system. There are two logical name directory tables
named lnm_system_directory and lnm_process_directory which
catalog the shareable and process- level logical name tables
respectively.

Chapter 2 Setting up UNIX to run SUPRA Server

38 P25-0132-46

The logical name search list is defined by the logical name lnm_file_dev.
By default, this logical name is defined by the system directory table and
is defined as lnm_process, lnm_group, lnm_system to indicate that the
search order of the tables is process followed by group, and then by
system. A process may define a local search list, for example, a search
list unique to that process, by defining the lnm_file_dev logical name in its
process directory.

The scope of the logical name is defined by the logical name table in
which it appears. One logical name may appear in more than one logical
name table, depending on how you set up your system. A logical name
that occurs in more than one table may be associated with a different
equivalence name in each logical name table.

The system searches logical name tables in a particular order and uses
the first logical name found, regardless of any other occurrences.

The equivalence name represents a file or a value to be passed to an
application. You normally make logical assignments through a shell
script. For example, you could assign the logical name CSIPDM to the
background PDM image at system level using the supplied csideflog
command:
csideflog -s CSIPDM /home/bin/csipdm

Through a set of supplied utilities and object libraries, you can create,
delete, examine, and modify both logical names and logical name tables
from within programs and shell scripts. For information on how to create
logical name tables, see “Creating logical name tables” on page 44.

Implementing logical names

System Administration Guide 39

The following table lists the logical names needed to run SUPRA Server.
The Table column gives the tables in which you can place the logical
name:

♦ P. PROCESS table

♦ G. GROUP table

♦ P/G. PROCESS or GROUP name table

♦ G/S. GROUP table if you are running a groupwide PDM; SYSTEM
table if you are running a systemwide PDM

♦ Any. It does not matter which table, provided you define the logical
name somewhere

Logical name Table Equivalence name Function
CSIDAPLOG G/S filename Log file for CSIDATBAS.
CSIDBAUTL Any SUPRA_EXE:csidbautl Stand-alone DBA utilities

program.
CSIHELP Any SUPRA_EXE:csihelp Help utility.
CSIMVCORE Any filename Name of script file

executed during exception
handling. Used to save
core dump. The default
script is csimvcore.

CSIOPCOM_AUTH Any filename PDM command
authorization file.

CSIPDM G/S SUPRA_EXE:csipdm PDM image.
CSIPDMINP G/S filename PDM input file.
CSIPDMLOG G/S filename Log file for PDM messages.
CSISTRLOG G/S filename Output file for startup

program.
CSI_AUTOSTART Any YES or NO Enable/disable automatic

PDM autostart.
Default = YES.

CSI_BAK Any YES or NO Backup data set prior to
executing csidba/expand or
csm changedb.
Default = YES.

CSI_BATCH_CONCURRENT Any YES Causes single-task SUPRA
PDM applications to run in
concurrent mode (HP-UX
and AIX platforms only).

Chapter 2 Setting up UNIX to run SUPRA Server

40 P25-0132-46

Logical name Table Equivalence name Function
CSI_CONSOLE P/G/S OPERn Sends messages from

csidap to the specified
operator console.

CSI_DIRDB G/S path Directory containing data
dictionary.

CSI_DBA_PRINT Any DDL, Normal (both) Defines the print style for
DBA database listings.

CSI_DMPANL Any filename Dump analysis file in case
of crash.

CSI_HELPFILE Any filename Help file for Help utility.
CSI_INHERIT_SINON Any YES or NO Tells DATBAS to use a new

TMS for child process.
Default = NO.

CSI_INIT_N S filename SUPRA Server initialization
script for remote startups.

CSI_INTERVAL Any 1-n Interval for startup retries
(both local and remote).

CSI_MRELAY Any TRUE or FALSE Sends messages to named
pipes.

CSI_nnnnnn G/S filename Points to a PDM initiation
script.

CSI_PDMID G/S 1- to 8-character name Name of the PDM.
CSI_PREFIX Any 1- to 3-character prefix Prefix used to distinguish

databases of the same
name running in the same
group or system.

CSI_PRIVFILE S filename SUPRA Server privilege
file.

CSI_READAHEAD Any YES or NO Use read-ahead buffering.
Default = YES.

CSI_READAHEAD_
STATISTICS

Any YES or NO Print read-ahead statistics
at sign off. Statistics are
printed in CSIDAPLOG.
Default = NO.

CSI_REPLYTIMER S 1-n Number of minutes
between operator reply
messages.

CSI_SERVICE S Must be the same for
both client and server

Defines entry in /etc/
services file.

Implementing logical names

System Administration Guide 41

Logical name Table Equivalence name Function
CSI_SYSPDMID P 1- to 8-character name Name of global section

used by a systemwide
PDM when the multiple,
systemwide PDMs
facility is used.

CSI_TIMEOUT Any 1-n Timeout for automatic
startup (local and
remote) in intervals.

CSI_START_RETRIES Any 1-n The number of times
the PDM will attempt a
startup before failing.

CSI_USEREX Any filename PDM user exit.
CSMCOMBAT Any SUPRA_EXE:csmcombat Batch compile.
CSTUDSLF Any SUPRA_EXE:cstudslf System log dump

program.
CSTUFMT Any SUPRA_EXE:cstufmt Stand-alone format

program.
CSTUIDX Any SUPRA_EXE:CSTUIDX Path to index utilities

program.
CSTURCV Any SUPRA_EXE:csturcv Stand-alone recovery

program.
dbname_CSI_PDM_
MACS

Any List of machines Preferred machine list
for PDM.

dbname_THREADS Any 1-n Specify alternate
MAXTHREADS
parameter for a given
database.

DUMPSLF_dbname Any filename File-containing system
log input parameters.

SEMMSL Any 1-n Number of semaphores
per set.

SUPRA_HELP Any /supra1/supra1.relx.x.x/
help

Help directory for
SUPRA Server.

SUPRAD Any CSI_DIRDB:suprad.mod Directory file.
SUPRA_SCRIPTS Any path Directory containing

DBA- support routines.
SUPRA_EXE Any path Directory containing

SUPRA Server images.

Chapter 2 Setting up UNIX to run SUPRA Server

42 P25-0132-46

In addition to the logical names described in the preceding table, SUPRA
PDM recognizes logical names in the FILE-SPEC field of the data set
physical file definition in the Database Administration Utility (csidba). Use
the following syntax:
logical-name:file-name

Example
csideflog -g PATH01 path

PATH01:file-name

In this example, the first line defines the logical name PATH01. The
second line defines the FILE-SPEC field.

With this FILE-SPEC definition method, you can move or copy files to
different directories without recompiling the database definition.
Recompilation is not needed because you modify the logical name
definition rather that the database definition.

Implementing logical names

System Administration Guide 43

Creating logical name tables
The system, group, and process logical name tables are already created
for you. However, you must actually create a logical name table under
two circumstances:

♦ If the default size of the system, group, and/or process tables is not
large enough for your application. In this case, you must create a
table with the appropriate size.

♦ If you want to create a unique, user-defined logical name table.

To create a logical name table, use the following syntax:

csicretab [-e number-of-entries] [-p permissions] [-s]

 table-name

-e number-of-entries

Description Optional. Defines the number of logical name entries allowed in this table.
The default value is 500 for sharable tables and 50 for nonsharable
tables.

Format 1-n numeric characters preceded by -e

-p permissions

Description Optional. Defines the logical name table permissions. The default value is
0666 for sharable tables and 0600 for nonsharable tables.

Format Octal numeric value preceded by -p

-s

Description Optional. Specifies that the table is sharable.

table-name

Description Required. Identifies the logical name table to be created.

Example The following example defines a logical name table CSI_PDM_MYPDM
that is sharable and has 700 entries:
csicretab -e 700 -s CSI_PDM_MYPDM

Chapter 2 Setting up UNIX to run SUPRA Server

44 P25-0132-46

Defining logical names
You use the csideflog utility to define logical names. The format of this
utility is:

 csideflog
−

−
−

















p

g

s

 [-t table-name] logical-name equivalence-name

−

−
−

















p

g

s

Description Optional. Specifies the level of the logical name.

Options -p Process (default)

 -g Group

 -s System

-t table-name

Description Optional. Specifies the table into which the logical name is to be placed.

Format 1–255 alphanumeric characters preceded by -t

logical-name

Description Required. Specifies the logical name to be created.

Format 1–255 alphanumeric characters

Consideration If you use neither the level nor the table option, place the logical name in
the first table in the process’ logical name table search list.

Implementing logical names

System Administration Guide 45

equivalence-name

Description Required. Specifies the name to which the logical name equates.

Format A valid UNIX file specification or another logical name

Examples

♦ In the following example, csideflog defines the logical name TESTDB
to equate to the file testdb.mod in the process logical name table:

 csideflog -p TESTDB /usr/alec/test/testdb.mod

♦ In the following example, csideflog defines the logical name
MARKDB in the logical name table mark_private:

 csideflog -t mark_private MARKDB /usr/mark/data/markdb.mod

♦ In the following example, csideflog defines the logical name ALECDB
in the first table in the logical name search list:

 csideflog ALECDB /usr/alec/databases/alec_database.mod

Chapter 2 Setting up UNIX to run SUPRA Server

46 P25-0132-46

Displaying logical names
You use the csisholog utility to display logical names. The format of
csisholog is:

csisholog
-p

-g

-s

















 [-t table-name] [logical-name]

-p

-g

-s

















Description Optional. Specifies the logical name to be displayed.

Options -p Process

 -g Group

 -s System

-t table-name

Description Optional. Specifies the table that you use to search for the logical name.

Format 1–255 alphanumeric characters preceded by -t

Consideration If neither the level or table options are used, all levels and all tables are
searched in the order of the process search list.

Implementing logical names

System Administration Guide 47

logical-name

Description Optional. Specifies the logical name to be displayed.

Format 1–255 alphanumeric characters

Considerations

♦ If no logical name is specified, all logical names in the table or level
are displayed.

♦ Wildcard characters may be used to search for a group of logical
names with a certain pattern of characters.

Examples

♦ The following command displays all occurrences of the logical name
steph from the process’ current logical name table search list:

 csisholog steph

♦ The following command displays all logical names in the process
logical name table beginning with the letter a:

 csisholog -p a*

Chapter 2 Setting up UNIX to run SUPRA Server

48 P25-0132-46

Displaying logical name values
You use the csiecolog utility to display the value of a single logical name.
csiecolog is particularly useful in using logical names in a script. The
format of csiecolog is:

csiecolog
-p

-g

-s

















 [-t table-name] logical-name

-p

-g

-s

















Description Optional. Specifies the logical name to be displayed.

Options -p Process

-g Group

-s System

-t table-name

Description Optional. Specifies the table that you use to search for the logical name.

Format 1–255 alphanumeric characters preceded by -t

Consideration If neither the level nor table options are used, all levels and all tables are
searched in the order of the process’ search list.

logical-name

Description Required. Specifies the logical name to be displayed.

Format 1–255 alphanumeric characters

Considerations

♦ If the logical name specified is not defined, nothing is displayed.

♦ Wildcard characters may be used to search for a group of logical
names with a certain pattern of characters.

Implementing logical names

System Administration Guide 49

Examples

♦ The following command displays the first occurrence of the logical
name CSIPDM from the process’ current logical name table search
list:

 csiecolog CSIPDM

♦ The following command loads an environment variable with the
contents of a logical name:

 CSIPDM_PATH = `csiecolog CSIPDM`

Chapter 2 Setting up UNIX to run SUPRA Server

50 P25-0132-46

Deleting logical names
You enter the csidellog utility to delete logical names. The format of the
csidellog utility is:

csidellog
−
−
−

















p

g

s

 [-t table-name] logical-name

−
−
−

















p

g

s

Description Optional. Specifies the logical name to be deleted.

Options -p Process

 -g Group

 -s System

-t table-name

Description Optional. Specifies the table from which the logical name is to be deleted.

Format 1–255 alphanumeric characters preceded by -t

logical-name

Description Required. Specifies the logical name to be deleted.

Format 1–255 alphanumeric characters

Considerations

♦ No pattern matching is supported. For example, you must specify the
full logical name.

♦ If you use neither the level nor the table options, delete the logical
name from the first table in the process’ logical name table search
list. Logical names are always displayed in alphabetic order.

Implementing logical names

System Administration Guide 51

Modifying logical names
You can use the csideflog utility to modify logical names. When using
csideflog, you specify the existing logical name in the logical-name
parameter, and you modify the other parameters as you require. The
csideflog utility then replaces the old parameters for the logical name with
the ones you just specified. See “Defining logical names” on page 45 for
the format of the csideflog utility.

Chapter 2 Setting up UNIX to run SUPRA Server

52 P25-0132-46

Starting daemon processes
SUPRA Server supplies four daemon processes as described in the
following table :

Daemon
process

Purpose/
section

What to do before
starting the daemon

Quantity

Required/
optional

csitidy Removes resources
used by processes that
aborted or exited (see
“Removing wasted
resources (csitidy)” on
page 55).

 One per
Resource
directory

Required

csichkpriv Maintains user
privileges (see
“Maintaining user
privileges (csichkpriv)”
on page 56).

1. Use the csisetpriv
program to create a
privilege file in which
you define privileges
for each user on the
system.
2. Create a logical
name in the system
logical name table that
points to the privilege
file.

One per
Resource
directory

Required

csistr Server for remote
TCP/IP Client-Server
operation (see
“Connecting to a
remote PDM—
client/server (csistr)”
on page 63).

 One per
system

Optional

csioper Enables
communication
between processes
and nominated
operators (see
“Enabling
communication
between processes
and nominated
operators (csioper)” on
page 65).

Create a logical name
in the system logical
name table.

One per
Resource
directory

Optional

Starting daemon processes

System Administration Guide 53

Start these daemons at system startup to prevent any problems that may
occur with users who attempt to use SUPRA Server components without
these processes running. Execute daemon_startup in the UNIX rc script,
which executes during UNIX startup.

To start the daemon processes, execute either the pdm_startup or
daemon_startup script. The install scripts generate those scripts when
you define the SUPRA PDM System. For more information on the install
scripts, refer to the SUPRA Server PDM UNIX Installation Guide,
P25-1008.

The UNIX user who starts the daemon processes must have adequate
permissions to perform the system operations the daemon processes will
perform. To have adequate permissions, the root user must start the
daemons.

The daemon processes also write information to log files. Each daemon
has its own logfile in the $CSIRESOURCES directory. The name of the
file is the name of the daemon plus the log name.

The UNIX KILL command is used to stop the daemons. Use the TERM
signal (KILL -TERM process-number) for the best results on all platforms.
The csiremall script also stops the daemons.

Chapter 2 Setting up UNIX to run SUPRA Server

54 P25-0132-46

Removing wasted resources (csitidy)
The csitidy daemon is the SUPRA Server background resource tidy
daemon. Its responsibility is to remove any resources that have been
obtained by components of SUPRA Server or applications using SUPRA
Server that have aborted or exited without removing these resources.
Each component of SUPRA Server communicates with the tidy daemon
through a named pipe, informing it of any resources that should be
deleted when the program aborts or exits. The information regarding
these resources is held in shared memory by the tidy daemon. Therefore,
if the tidy daemon aborts abnormally for some reason, it can be restarted
without loss of information, for example, it will use the information held in
the shared memory segment used by the abnormally terminated daemon.

The tidy daemon accepts one optional parameter. This parameter
defines the number of entries to allow for space in the shared memory
segment. The default value is 1024; this value is normally adequate. If
your pdm system has a large number of resources, you may want to
increase this number; if your pdm system is smaller, you may want to
decrease it.

The tidy daemon writes error messages to the csitidy.log log file in the
$CSIRESOURCES directory. One csitidy daemon is required for each
resource directory.

Removing wasted resources (csitidy)

System Administration Guide 55

Maintaining user privileges (csichkpriv)
The csichkpriv daemon is a privilege-checking daemon that allows a
multilevel security system to be applied to facilities within SUPRA Server.
Standard UNIX only supports two levels of privilege: a normal user and
the superuser. SUPRA Server has many facilities that should not be
made available to a normal user. However, these facilities should not be
restricted to a superuser, since any damage that could be caused
through misuse is limited to SUPRA Server and not to other non-SUPRA
Server users on the system. One privilege daemon is required for each
resource directory.

The privilege daemon is a process that: (1) accepts privilege checking
requests from applications, and (2) validates whether a particular user
can perform a function by checking a privilege file you create with the
csisetpriv program.

Anyone logged in as superuser has all privileges and effectively
bypasses all checking.

An example of a function that requires a privilege within SUPRA Server is
creating a system level logical name. Because logical names in the
system logical name table are available to any user on the system, you
would not want any user deleting and creating logical names in this table.
You may wish to restrict this to your SUPRA DBA.

Chapter 2 Setting up UNIX to run SUPRA Server

56 P25-0132-46

Understanding user privileges
The following table lists the user privileges and provides a description of
each. If a user attempts to use an unauthorized function, the function fails
and the user receives a privilege violation.

Privilege Description
DBAPRV Allows the user to run csioauth, the csiopcom

authorization program.
GRPCLN Allows the user to remove any group resources that

are not needed.
GRPLOG Allows the user to create logical names in his/her

group logical name table.
REPLY Allows a user to use csireply operator communication

facility. It is possible to talk to any SUPRA Server PDM
using this facility. However, since this facility can
destructively affect other users, it has been deemed a
privileged function.

SETPRV Allows the user to set privileges.
SYSCLN Allows the user to remove any system resources that

are not needed.
SYSLOG Allows the user to create logical names and system

directory logical name tables in the system.

The privilege-checking daemon accesses the user-privilege file through
the logical name CSI_PRIVFILE, which should equate to the full path and
file name of the privilege file.

Maintaining user privileges (csichkpriv)

System Administration Guide 57

Creating and modifying the privilege file
You use the csisetpriv program to create and modify a user privilege file.

To run this program, you must be logged in as superuser.

To run the csisetpriv program, enter csisetpriv. The program displays an
introduction banner. If the logical name of the privilege file CSI_PRIVFILE
does not exist, you will be prompted for the path of the privilege file. If this
file (from logical or prompt) does not exist, you will be asked if you wish to
create it. The csisetpriv program will show it is ready to accept
commands by the “CSISETPRIV>” prompt. At this prompt, the following
commands are available:

Commands Description
ADD Add a new user to the privilege file.
DISPLAY Display details of a user(s) in the privilege file.
EXIT Exit from the csisetpriv program.
HELP Invoke the online Help facility. (After the word help,

you can enter the name of the command you want
help with, or just type help and you will get a Help
screen.)

MODIFY Modify an existing user in the privilege.
QUIT Exit from the csisetpriv program.
REMOVE Remove an existing user from the privilege file.

A description of each command and its format follows.

Chapter 2 Setting up UNIX to run SUPRA Server

58 P25-0132-46

Adding a new user (ADD)
Use the ADD command to add a new user to the privilege file with the
specified privileges. Enter the command in this format:

ADD USER=user privilege-list

user

Description Required. Specifies the name of the user to be added to the privilege file.

Format Valid user name on your system

privilege-list

Description Required. Specifies the list of privileges given to the user.

Considerations

♦ Separate each privilege with a blank space.

♦ You can use the keyword ALL to specify all privileges.

♦ See the table under “Understanding user privileges” on page 57 for a
list of privileges.

Examples

♦ The following example gives the user mark the privilege to create
group- and system-level logical names:

 CSISETPRIV> ADD USER=mark SYSLOG GRPLOG

♦ The following gives the user steph all privileges:
 CSISETPRIV> ADD USER=steph ALL

Maintaining user privileges (csichkpriv)

System Administration Guide 59

Modifying privileges (MODIFY)
Use the MODIFY command to modify the privileges of an existing user in
the privilege file. The command takes the following format:

MODIFY USER=user privilege-list

user

Description Required. Specifies the name of the user to be modified in the privilege
file.

Consideration Valid user name on your system.

privilege-list

Description Required. Specifies the list of privileges to be added to or removed from
the user.

Considerations

♦ If a list of privileges is given with repeating privileges, the last
occurrence will be used. Therefore, if you add a particular privilege,
then remove it in the same command, it will be removed.

♦ Use the keyword ALL to specify all privileges.

♦ To remove a privilege, precede its name with NO; for example,
NOSYSLOG, NOPRVIO, NOALL, and so on, separating each
privilege by a blank space.

♦ See the table under “Starting daemon processes” on page 53 for a
list of privileges.

Examples

♦ The following command adds DBA privilege to the user mark but
removes system logical name privilege:

 CSISETPRIV> MODIFY USER=mark DBAPRV NOSYSLOG

♦ The following example gives the user steph all privileges:
 CSISETPRIV> MODIFY USER=steph ALL

Chapter 2 Setting up UNIX to run SUPRA Server

60 P25-0132-46

Removing a user from the privilege file (REMOVE)
Use the REMOVE command to remove a user from the privilege file. The
user is completely removed and is left without any privileges. The format
of the command is as follows :

REMOVE USER=user

user

Description Required. Specifies the name of the user to be removed from the
privilege file.

Consideration Valid user name on your system.

Example The following example removes the user mark from the privilege file:
CSISETPRIV> REMOVE USER=mark

Maintaining user privileges (csichkpriv)

System Administration Guide 61

Displaying user details within the privilege file (DISPLAY)
The DISPLAY command displays privileges of users within the privilege
file. The format of the command is:

DISPLAY USER=user

user

Description Required. Specifies the name of the user to be displayed from the
privilege file.

Considerations

♦ You can use the wildcard character (*) to display details of all users.

♦ If you do not use the wildcard character, use a valid user name on
your system.

Examples

♦ The following example displays privilege details of the user mark:
 CSISETPRIV> DISPLAY USER=mark

♦ The following example displays details of all users in the privilege file:
 CSISETPRIV> DISPLAY USER=*

Chapter 2 Setting up UNIX to run SUPRA Server

62 P25-0132-46

Connecting to a remote PDM—client/server (csistr)
The client/server feature of SUPRA Server PDM provides applications
with TCP/IP communications with server PDMs. The standard DATBAS
csidatbas.o or csidatbas.sl provides the client software. The csistr
daemon provides the server software. The daemon runs on the server
machine and provides access to any PDM running on that machine. If
you want to start a PDM with remote access capabilities on a machine on
your network, you must also run the csistr daemon on it.

The root user executes the csistr daemon on the server. It also runs any
number of PDMs, the csitidy and csichkpriv daemons, and optionally the
csioper daemon. The UNIX environment variable CSIRESOURCES must
be defined on the server. The client UNIX user ID must be duplicated on
the server. The client machine runs its own csitidy and csichkpriv
daemons. The client must specify the database logical names and the
server’s PDM system name in the logical name CSI_PDMID. The
database and its data sets reside on the server. Following are examples
of logical name definitions on the client:
csideflog -g CSI_PDMID pdm-system-name

csideflog -g dbname /path/dbname.mod

csideflog -g dbname_CSI_PDM_MACS host-name

If databases are prefixed, the logical name CSI_PREFIX must be defined
on both the server and the client. The client/server feature uses TCP/IP
sockets, which require the definition of the supra1 service in
/etc/services. The default value for the supra1 service is 8000. If this
value conflicts with any existing service on either the client or the server,
you may override the default value by specifying a different value for the
supra1 service in /etc/services on the client and the server. For example:
supra1 8000/tcp as defined in /etc/services

If you must run more than one csistr daemon, you can override the
supra1 service name by using the CSI_SERVICE logical name. For
example:
service-name 10000/tcp as defined in /etc/services

csideflog -g CSI_SERVICE service-name logical name definition

Connecting to a remote PDM—client/server (csistr)

System Administration Guide 63

Service-name and its corresponding number must match on the client
and the server.

You start the csistr daemon on the server at the same time as the other
daemons. Because csistr refers to several logical names, execute it after
defining the logical names. The daemon_startup and pdm_startup
scripts can execute csistr.

There is no need to link applications with a special datbas. The preferred
machine list logical name (dbname_CSI_PDM_MACS) specifies the host
name for the location of the PDM, either local or remote. The /etc/hosts
file or the name server defines the host name. When an application tries
to sign-on to a database whose preferred machine list says that it should
run on a remote node, the application attempts to communicate to the
csistr daemon on that machine through the supral service TCP/IP socket.
When it makes the connection, the csistr daemon generates a child
process which opens a socket. This process performs database access
functions for the client by calling the standard database access program,
csidatbas, and communicates with the client using the socket created. If
the PDM is not running on that remote node, automatic PDM startup
occurs (as described in “Understanding automatic PDM startup” on
page 111). When the client application issues a SINOF, the process
terminates.

Chapter 2 Setting up UNIX to run SUPRA Server

64 P25-0132-46

Enabling communication between processes and nominated
operators (csioper)

The csioper daemon is a communications daemon that allows
communications between processes and nominated operators. On each
UNIX system, only one csioper process should be running. Operators are
numbered 1–12 and prefixed by “OPER”, for example, OPER1,
OPER2...OPER12, which you can assign to any number of terminals on
the system. You use the csireply command to assign operator numbers.
See “Communicating with the PDM using the csireply command” on
page 160 for the procedures for using the csireply command.

Processes running on the system can send messages to assigned
operator terminals and can also send requests that request a reply.
Following are some operator terminal assignments:
OPER1 assigned to tty00 and ttypa

OPER9 assigned to tty01

In the above example, any messages that were sent to OPER1 would
appear on terminals tty00 and ttypa, and any messages sent to OPER9
would appear on terminal tty01. You can also assign more than one
operator number to one terminal.

Enabling communication between processes and nominated operators (csioper)

System Administration Guide 65

Writing SUPRA Server PDM user exits
User exits are invoked in two different ways. Internal user exits are
“called” in the DATBAS module. You can code two pre-PDM, internal
user exit modules and a post-PDM, internal user exit module. External
user exits are “fork and exec’ed” in the CSI_DATBAS module. You can
code a pre-PDM external user exit module and a post-PDM, external
user exit module.

Internal user exits
To implement internal user exits for UNIX PDM, perform the following
steps:

1. Using the skeleton internal user exit program provided on the release
tape in the file release/src/csiintuser.c, add code to the modules
provided. If you write your modules in COBOL, simply add a function
call to your entry points in csiintuser.c. csiintuser.c contains three
entry points detailed as follows:

Entry point name

Point of
initiation

Return value

1 CSI_INT_USEREX1 Before DML
Processing

None

2 DATBASXT Before DML
Processing

0, 4 or 8

3 CSI_INT_USEREX2 After DML
Processing

None

 All of the entry points are passed nine parameters which are

addresses of the DML function parameters.

Chapter 2 Setting up UNIX to run SUPRA Server

66 P25-0132-46

 The DATBASXT exit can be used to modify a command before the
DML is processed. From the DATBASXT module, it is possible to call
CSI_DATBAS one or more times. This can be useful for
implementing user-defined DML such as DELVC. A DELVC function
would generate a READV and a DELVD for each record in a chain.
You may code a return value for DATBASXT, which controls the
processing, as follows:

Return
code

Processing

0 Process the function normally; return to the
application after calling CSI_INT_USEREX2.

4 Process the function normally; return to the
DATBASXT module.

8 Do not process the function; return to the application
after calling CSI_INIT_USEREX2.

2. Compile the source module csiintuser.c and link it with your

application modules and CSIDATBAS to form an executable image.

If you want to use only one of the exits, the others must still be
defined. They will simply return immediately.

Writing SUPRA Server PDM user exits

System Administration Guide 67

External user exits
To implement external user exits for UNIX PDM, perform the following
steps:

1. Using the skeleton, external user exit program provided on the
release tape in the file release/src/csiextuser.c, add code to the
modules provided. If you write your modules in COBOL, simply add
function calls to your entry points in csiextuser.c. csiextuser.c
contains two entry points defined as follows:

Entry point name

Point of
initiation

Return value

1 CSI_INT_USEREX1 Before DML
Processing

None

2 CSI_INT_USEREX2 After DML
Processing

None

 All of the entry points are passed nine parameters which are

addresses of the DML function parameters.

2. Compile the source module csiextuser.c and any other source
modules that you have written. Link these modules with the object
module release/bin/csiextmain.o to form an executable image.

3. Define the logical name CSI_USEREX to point to the executable
image created above as follows:
csldeflog -g CSI_USEREX /users/mark/mark.exit

 This logical name can be defined in any logical name table. If you
define it in a shareable table, any application may use it.

If you want to use only one of the exits, the others must be defined.
They will simply return immediately.

Chapter 2 Setting up UNIX to run SUPRA Server

68 P25-0132-46

3
Setting up the Directory

The SUPRA Directory is the central source of control for your database.
Setup and maintenance of the Directory involves the following:

♦ Describing the data sets and linkpaths that comprise the SUPRAD
database, space requirements, and supplied user names

♦ Changing the definition of the Directory database by listing
permissible changes and explaining how to make them

♦ Modifying the Directory by changing the database description

♦ Modifying the Directory data sets by increasing the size or changing
the load limit

System Administration Guide 69

Describing the Directory database
The SUPRA Directory is contained in the database SUPRAD. SUPRAD
consists of the following data sets plus a task log:

♦ UDD1. A primary data set with entities and some attributes

♦ UDD2. A related data set with relationships between entities

♦ UDD3. A related data set with comment information

The following figure shows the structure of the SUPRAD database in
more detail. The lines in the figure represent linkpaths between the data
sets. Specify the primary linkpaths, UDD1LK21 and UDD1LK31, when
running UNLOAD/RELOAD or the statistics utility from the Utilities
function. The SUPRAD password is IONARY.

Primary Data Set
UDD1

Entities &
Attributes

Related Data Set
UDD2

Relationship
Data

Related Data Set

UDD3
Comments

etc.

UDDILK21 UDDILK31

Because the Directory contains a substantial amount of information when
it is delivered, ensure that SUPRAD is large enough for your initial needs.
The next section, “Estimating Directory data set sizes,” gives guidelines
on Directory space requirements.

Chapter 3 Setting up the Directory

70 P25-0132-46

Estimating Directory data set sizes
The Directory data sets, like your private data sets, operate more
efficiently if they are not too full. Use the following general guidelines to
estimate the sizes of the Directory data sets for your system:

♦ Each entity requires two records on UDD1, one record on UDD2, and
one record on UDD3.

♦ Each relationship requires one record on UDD2. Each entity has at
least one relationship, and many have more. You can estimate the
number of relationships as the number of entities times 4.

♦ UDD2, therefore, requires two and a half times as many records as
UDD1.

♦ Each line of comment or navigation definition requires one record on
UDD3.

♦ The Directory contains special information used by Directory
maintenance and the definition of SUPRAD. Allow for this in your
estimates as follows:

Directory
data set

Directory
maintenance
information

SUPRAD
definition

Total
records
required by
data set

Total
records
available at
install

UNIX
bytes
required

UDD1 500 200 700 5000 600K
UDD2 1100 450 1550 10,020 156K
UDD3 2500 300 2800 8000 1024K

Describing the Directory database

System Administration Guide 71

Setting up Directory user names
The Directory contains two initial user names, both with blank passwords:

♦ DATABASE-DESCRIPTIONS. Can access all the databases, views,
and so on, you will define

♦ DATA-DICTIONARY. Can access only the definition of the Directory,
SUPRAD

Sign on to DBA with the user name DATABASE-DESCRIPTIONS to
create other, less-privileged user names for your staff. Then change the
passwords of the two initial user names. They do not have passwords
defined in the standard directory.

To execute FORMAT, DBA Utilities, or RECOVERY, you need to sign on
with the user name UTILITIES. The user name UTILITIES is not stored
on the Directory. Use UTILITIES only when running the FORMAT, DBA
Utilities, or RECOVERY functions against the Directory. The UTILITIES
password is DATARULE. Because this user name is not stored on the
Directory, you cannot change the password.

Chapter 3 Setting up the Directory

72 P25-0132-46

Changing the definition of the Directory database
You can change certain parts of the definition of the Directory database,
SUPRAD. This database is defined on the Directory, and you must sign
on to DBA with the user name DATA-DICTIONARY to modify it. You
cannot alter the structure of SUPRAD, but you can change the following
characteristics:

♦ Data set size(s)

♦ File specifications

♦ Shadow option

♦ System logging

♦ Number of buffers

♦ Maximum number of update tasks or processes allowed

You may wish to change specific Directory details, such as buffer
allocation or logging options, at installation. Alternatively, after you have
been running the SUPRA Directory for some time, you may need to
modify the Directory definition if:

♦ A LOAD status occurs when you sign off from DBA. This indicates
that one or both of UDD2 and UDD3 is at load limit.

♦ A FULL status occurs when you add or save a new database, a new
data item, or a new view. This indicates that at least one of the UDD
files has no free space left.

To check on the status of the UDD files, sign on to DBA with the user
name DATA-DICTIONARY and run the statistics utility. Refer to the
SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220, for details of how to produce statistics.

Changing the definition of the Directory database

System Administration Guide 73

Modifying the Directory
The Directory is central to the operation of SUPRA Server. Follow these
steps before modifying your Directory:

1. Ensure that no user is signed on to the Directory.

2. Make a backup copy of the Directory database and the SUPRAD
compiled database description using the tar or cpio commands.

Keep a copy of a listing of the Directory database to be sure of its original
details.

To modify the Directory database (SUPRAD), take these steps:

1. Sign on as user name DATA-DICTIONARY.

2. Make your changes, referring to the following table for required
actions.

3. Validate and compile SUPRAD.

 Compiling SUPRAD generates a new SUPRAD.MOD; however,
SUPRA Server continues to use the previous SUPRAD.MOD until all
users have signed off. When a user signs on again either implicitly
(after using FORMAT) or explicitly, SUPRA Server uses the new
SUPRAD.MOD.

4. Take a backup of the new Directory and its compiled database
description.

If you have a system log for SUPRAD.MOD, you must format a new
system log after making your Directory modifications. This is essential if
you change the system log size, any allocations, or data set details. The
following table lists all possible changes to SUPRAD and the
corresponding actions required after compilation.

SUPRA DBA uses the Directory to operate. During maintenance, the
Directory might not be valid. Therefore, to sign on to SUPRA DBA without
signing on to the Directory, use the special user name UTILITIES. The
user name UTILITIES gives access only to FORMAT, UTILITIES, and
RECOVERY. Use these functions to re-create a valid Directory, then sign
on as usual.

Chapter 3 Setting up the Directory

74 P25-0132-46

If you select FORMAT, UTILITIES, or RECOVERY from a user name
other than UTILITIES, the system signs off for you, even if you do not
actually run the utilities. If you select another function, SUPRA Server
signs on again using your original user name. Therefore, when using
FORMAT, UTILITIES, or RECOVERY to maintain the Directory, always
do so with the user name UTILITIES.

The following table lists the database details on the Directory that you can
change and the actions you must take if you make the change:

Parameter
type

Parameter name

Action required as a result of
the modification

Database
Details

DATABASE-PASSWORD No further action.

 MAX-HELD-RECORDS Do not reduce this value from
200.

 MAX-TASKS Format a new task log. The size
of the task log may change. The
value it holds must match that in
the compiled database
description.

 MAX-UPDATE-TASKS Format a new task log.
 SHADOW-OPTION If you changed this from N,

make a copy of the relevant
data sets, using the names
used in the file specifications.

 SINGLE-TASK If you change this to Y, SUPRA
Server sets MAX-TASKS and
MAX-UPDATE-TASKS to one.
Therefore, format a new task
log. If you changed it to N, no
further action is required unless
you change MAX-TASKS or
MAX-UPDATE-TASKS.

Task Log
Details

TASK-LOG-BLOCK-SIZE Format a new task log.

 TASK-LOG-NO-OF-BLOCKS Format a new task log.
 TASK-LOG-NO-OF-BUFFERS No further action.

Modifying the Directory

System Administration Guide 75

Parameter
type

Parameter name

Action required as a result of
the modification

Task Log
Details (cont.)

TASK-LOG-FILE-SPEC Copy or rename the existing
task log to the specified file, or
format a new task log.

 TASK-LOG-SHADOW-FILE-SPEC Copy the existing task log or
format a new one.

System Log
Details

SYSTEM-LOG-BLOCK-SIZE
SYSTEM-LOG-NO-OF-BLOCKS

Format a new system log.
Format a new system log.

 FILE-1-FILE-SPEC If just created, format a new
system log.

 FILE-2-FILE-SPEC If changed, copy the existing
system log or format a new
one.

 FILE-1-SHADOW-FILE-SPEC Copy the system log or format a
new one.

 FILE-2-SHADOW-FILE-SPEC Copy the system log or format a
new one.

Data Set
Buffers

NUMBER-OF-COPIES-OF-BUFFER No further action.

 BUFFER USE (which data sets share
which buffers, including deleting
buffers and creating new buffers).

No further action.

Data Set
Details

TOTAL-LOGICAL-RECORDS Unload and reload data set.

 LOGICAL-RECORDS-PER-BLOCK Unload and reload data set.
 CONTROL-INTERVAL Unload and reload data set.
 LOAD-LIMIT Unload and reload data set.
 RECORD CODES Cannot be changed.
 DATA ITEMS Cannot be changed.
Data Set File
Specifications

ALLOCATION - 1/2/3/4
FILE-SPEC - 1/2/3/4

Unload and reload data set.
Copy or rename data set.

 SHADOW-FILE-SPEC - 1/2/3/4 Copy or rename data set.

Chapter 3 Setting up the Directory

76 P25-0132-46

Modifying the Directory data sets
You can increase the size or change the load limit of Directory data sets
in UDD1, UDD2, and UDD3 in the following ways:

♦ Change the TOTAL-RECORDS and LOAD-LIMIT qualifiers of Fast
utilities (see “Using Fast utilities on UDD files” on page 78)

♦ Use the unload and reload function from DBA utilities (see “Using
DBA utilities on UDD files” on page 80)

You cannot use the Expand and Reset functions to modify Directory data
sets UDD1, UDD2, and UDD3 because Expand and Reset update both
the Directory and the data sets.

Do not confuse the old SUPRAD.MOD and new SUPRAD.MOD files. If
UDD1, UDD2, and UDD3 do not exactly match SUPRAD.MOD, do not
sign on to DBA, explicitly or implicitly, except with the user name
UTILITIES.

Modifying the Directory data sets

System Administration Guide 77

Using Fast utilities on UDD files
Before you execute the Fast utilities against UDD files, take a backup of
your Directory. To change the Directory data sets using Fast utilities,
enter the command changedb at the shell command line together with a
list of qualifiers. You must specify the user name DATA-DICTIONARY to
modify the Directory. For example, to increase the file size and reset the
load limit for the related data set UDD2, enter the changedb command in
the following format:
csmchangedb

DATASET=UDD2

RELATED TOTAL_RECORDS=20000

LOAD_LIMIT=90

DB_NAME=SUPRAD

USERNAME=DATA-DICTIONARY

PASSWORD=IONARY

Alternatively, to alter more than one Directory data set at a time, use an
ASCII line-terminated file containing a list of modifications. For example,
the following change file modifies UDD1, UDD2, and UDD3:
DATASET=UDD1 PRIMARY TOTAL_RECORDS=10000

DATASET=UDD2 RELATED TOTAL_RECORDS=20000 LOAD_LIMIT=90

DATASET=UDD3 RELATED TOTAL_RECORDS=10000

DB_NAME=SUPRAD

USERNAME=DATA-DICTIONARY

You may include only data-set parameters in a change file. You cannot
include the Directory Access parameters USERNAME and PASSWORD,
or the database parameters SIGNON_DB_NAME, DB_PASSWORD, and
OUTPUT. Specify these parameters on the command line or in a shell
script.

You can also alter multiple Directory data sets using a shell script. For
more information on doing this, refer to the SUPRA Server PDM Utilities
Reference Manual (UNIX & VMS), P25-6220.

Chapter 3 Setting up the Directory

78 P25-0132-46

Invoke Fast utilities with a change file as follows:
csmchangedb CHANGE_LIST= /path/uddchange.dat DB_NAME=suprad

If you wish to use more than one physical file for any UDD data set,
remember that each UDD data set has a default file allocation of
(1,0,0,0). For example, all the records held in the first file specified and
none in the other three. You will have to modify the file allocation value to
reflect the number of physical files you define for each UDD data set.
Fast utility usage, including details of file allocations, are described in
more detail in the SUPRA Server PDM Utilities Reference Manual (UNIX
& VMS), P25-6220.

Always make a backup of the Directory before you attempt any
modifications.

Modifying the Directory data sets

System Administration Guide 79

Using DBA utilities on UDD files
To unload/reload data sets using DBA utilities, perform the following
steps:

1. Copy the existing SUPRAD.MOD file to another physical file
(cp suprad.mod oldsuprad.mod).

2. Sign on to DBA using user name DATA-DICTIONARY and apply the
required changes. Change only one data set at a time.

3. Validate and compile the database SUPRAD. This will create a new
SUPRAD.MOD file.

4. Exit from DBA and sign on again with user name UTILITIES.

5. Select the Utilities function from the main menu.

6. Select the unload/reload function from the utilities menu (function 1
for primary data sets or function 2 for related data sets). Specify
OLDSUPRAD.MOD as the source database file specification, and the
new SUPRAD.MOD (created in Step 3) as the target.

7. Repeat steps 2–6 for each data set you want to change. You must
invoke several utility jobs, but you need to modify, validate, and
compile the SUPRAD database only once for the primary data set
UDD1, and once for the related data sets UDD2 and UDD3.

To unload and reload more than one Directory data set, first ensure that
only one utility job at a time runs against the Directory. When the utility
jobs finish, you can use the updated Directory. Refer to the SUPRA
Server PDM Utilities Reference Manual (UNIX & VMS), P25-6220, for a
detailed description of the function of DBA utilities.

Chapter 3 Setting up the Directory

80 P25-0132-46

4
Initiating the SUPRA Server Physical
Data Manager

The multitask SUPRA Server Physical Data Manager (PDM) runs as
several UNIX daemon (background) processes. The application tasks
and the PDM processes communicate through the database access
program, csidatbas, which is linked as part of the application program.
The application programmer codes Physical Data Management
Language (PDML) calls to the database access program’s entry point,
DATBAS. The database access program transfers these calls to the
SUPRA PDM processes through:

♦ Shared memory, if the SUPRA PDM system is local

♦ TCP/IP messages, if the SUPRA PDM system is remote

When processing is complete, the SUPRA PDM processes return the
results of the PDML functions to the database access program
(DATBAS). Then, the database access program returns the results to the
application program.

You initiate the multitask SUPRA PDM either manually or automatically
as described later in this chapter. By entering operator commands
through the Operator Communications Utility (csiopcom), you deinitialize
the multitask SUPRA PDM.

The SUPRA PDM writes error messages to the standard error file (stderr)
and a log file defined by the logical name CSIPDMLOG. By default, the
standard error file is redirected to system-name.err in the Resource
directory. The PDM log file is named system-name.log in the Resource
directory.

The database access programs (csidatbas and csibatbas) write
messages to the DAP log file defined by the logical name CSIDAPLOG.
By default, this file is system_csidap.log in the Resource directory.

System Administration Guide 81

How to enable the multitask SUPRA PDM
You can initiate the PDM manually or automatically. With automatic PDM
initiation, the first task (either single-task running in concurrent mode or
multitask) to attempt a database SINON initiates the PDM. Manual
initiation means that you start the PDM from your login shell.

The UNIX user that starts a SUPRA PDM system must have adequate
permissions to carry out the file- and system-resource operations the
SUPRA PDM performs. The root user must start a systemwide SUPRA
PDM system; a member of the group must start a groupwide SUPRA
PDM system.

Manual PDM initiation
For manual PDM initiating, execute the pdm_startup script created by the
s1_install script from the shell. Refer to the SUPRA Server PDM UNIX
Installation Guide, P25-1008, for more details. Always initiate the PDM
manually to test your setup before you rely on automatic startup. A
manual startup will show any errors in your command file or input files,
whereas an automatic startup cannot detect command file errors and
gives unpredictable results. If the CSI_CONSOLE logical name has been
defined, then additional information will be sent to the operator as an aid
to debugging problems.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

82 P25-0132-46

Automatic PDM initiation
By default, the PDM is set to automatic initiation (meaning the first task to
sign on to the PDM will automatically initiate it). However, always initiate
the PDM manually to test your setup before you rely on automatic startup.
Change the automatic default setting to NO by defining the logical name
CSI_AUTOSTART = NO.

Automatic initiation requires that the daemons be up and all environment
variables and logical names be defined. This can be done by running
either daemon_startup or pdm_startup.

During automatic PDM initiation, the first task to attempt a database
SINON is granted a PDM lock, which prevents other tasks from starting
up the PDM on another machine. The task then communicates with the
PDM either through shared memory (if the application and the PDM
reside on the same machine) or through TCP/IP (if the application and
the PDM reside on different machines). Once the PDM has started up on
one of the machines on the preferred machine list, the PDM lock is
released to allow other tasks to communicate with the PDM. See
“Understanding automatic PDM startup” on page 111 for more
information on automatic PDM startup.

If the PDM has exhausted all its startup attempts (you specify the number
of times it may attempt to startup by defining the logical name
CSI_START_RETRIES), it will fail with an error status of NMAC and will
not attempt any additional restarts.

Do not use the automatic startup feature with systemwide SUPRA PDM
systems. The automatic startup feature starts the SUPRA PDM system
by the first user to perform a PDML function. If this user is not the root
user, the SUPRA PDM system will not have adequate permissions to
perform file and system resource operations, which can cause system
calls to return permission-denied errors.

How to enable the multitask SUPRA PDM

System Administration Guide 83

Logical names
The PDM relies on logical names to identify the various executable
images and files it needs to run. Because logical names are not
accessible across machines, include the definitions on each machine
where a PDM may run.

You must make each logical name available to all user accounts that
need to use it. Do this by placing the logical name definitions in each
user’s shell startup script or by placing the logical name in the group or
system logical name tables. This process will make the logical name
definitions available to all accounts with the same group ID or to the
whole system. This process requires the definition only once.

Whether you start the PDM manually or automatically, you must define
certain logical names. You need to decide where to best define these
logical names. For example, you could define them as part of your UNIX
system startup, or you could include them in a PDM-initiation script.

You must use a PDM-initiation script if you are starting up a remote PDM.

The following table lists the logical names that you must define,
regardless of where you define them:

Logical name Description
CSIPDMINP Identifies the PDM input file.
6-character logical name for the
database; may be 8, 9, or 10
characters, if prefixed.

Equates to the database
description file.

dbname_CSI_PDM_MACS Defines a preferred machine list
for each database that will run in
the PDM.

CSI_PDMID Points to the name of the PDM
to be used.

CSI_SYSPDMID Points to the PDM name (if you
are using the multiple
systemwide PDM facility).

Chapter 4 Initiating the SUPRA Server Physical Data Manager

84 P25-0132-46

You may optionally define the logical name CSI_AUTOSTART.
CSI_AUTOSTART identifies whether or not you want to start the PDM
automatically. See “Implementing logical names” on page 38 for a
complete list of logical names used by SUPRA PDM.

Example—enabling the PDM using an initiation script. The following
information shows how to set up for PDM initiation by defining the
required logical names in a PDM-initiation script. (“Understanding
automatic PDM startup” on page 111 shows how to initiate the PDM
using example initiation and input files.)

1. Create a SUPRA Server initiation script. This script does the
following:

a. Identifies the PDM input file with the logical name CSIPDMINP.

b. Identifies the PDM output log file with the logical name
CSIPDMLOG.

c. Defines a 6-character logical name for each database description
file. If prefixed, it defines an 8- to 10- character logical name for
each prefixed, database description file.

d. Defines a preferred machine list for each database that will run in
the PDM.

e. Optionally defines the logical name CSI_AUTOSTART to be NO
if you wish to inhibit automatic PDM initiation.

f. Optionally issues the command to initiate the PDM background
process, if either manual startup or remote startup are required.

“How to enable the multitask SUPRA PDM” on page 82
describes the contents of a SUPRA Server initiation script and
how to use a database prefix to allow users in the same group ID
or system to access physically different databases with the same
database name.

How to enable the multitask SUPRA PDM

System Administration Guide 85

2. Create a PDM input file. This file contains parameters to define how
the PDM is set up. The PDM locates the PDM input file by translating
the logical name CSIPDMINP. “Using a database prefix” on page 94
describes the contents of the PDM input file.

3. Define the logical name CSI_PDMID to point to the name of the PDM
to be used. This logical name must exist before PDM initiation, and it
must be available to all user accounts that might execute an
application that will use the PDM. See “Defining the logical name for
the PDM (CSI_PDMID)” on page 108 for a description of the logical
name CSI_PDMID.

4. To use the multiple systemwide PDM facility, define the logical name
CSI_SYSPDMID to point to the PDM name. This logical name must
exist before PDM initiation and must be available to each user who
might execute an application that is to use the PDM (see “Defining
the logical name for a multiple systemwide PDM (CSI_SYSPDMID)”
on page 110).

The pdm_startup script created automatically by the install scripts for
each SUPRA Server PDM system contains all of the above
information except the individual database logical names. To define
them, add csideflog entries to pdm_startup or another script. Then,
execute the script.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

86 P25-0132-46

The following figure shows what files and images are used during PDM
initiation:

Application Tasks

Start-up
Program
Log File

PDM
Log
File

logical name
CSIPDMLOG

logical name
CSIPDM

DAP
Log File

logical name
CSIDAPLOG

Sends
output

to

Calls

(linked with
Communicates

with

Uses

(if application is remote)

csidatbas

 application)
csistr

csipdm

Passes requests to and from shared memory
(if the application is local)

csidatbas
(linked with csistr)

csistr through TCP/IP

DAP
Log File

Calls

PDM
Input

Parameter
File

logical name
CSIPDMINP

Parameter logical name
CSIDAPLOG

Passes requests
to and from
shared memory

$CSIRESOURCES/
csistr.log

How to enable the multitask SUPRA PDM

System Administration Guide 87

Creating a PDM initiation script
To enable manual and automatic PDM initiation, use a standard text
editor such as vi or emacs to edit the pdm_startup script for the PDM
system you want to run.

This example shows the additional lines that must be added to the
pdm_startup script to start the PDM on machine UNIXA, UNIXB, or
UNIXC for TESTDB.
Group-level logical names for the three TESTDB

compiled database descriptions

 csideflog -g TESTDB /home/data1/testdb.mod

 csideflog -g PRD_TESTDB /home/data2/testdb.mod

 csideflog -g DEM_TESTDB /home/demo/testdb.mod

 csideflog -g TESTDB_CSI_PDM_MACS UNIXA,UNIXC

 csideflog -g PRD_TESTDB_CSI_PDM_MACS UNIXC,UNIXB

 csideflog -g DEM_TESTDB_CSI_PDM_MACS UNIXA

Each script contains the csideflog utility to create the necessary logical
names, and the csipdm executable image to initiate the PDM process in
background. The name for the PDM is constructed from the logical name
CSI_PDMID and the group ID in which the PDM is running (zeros if
systemwide). When using the multiple systemwide PDM facility, the
name for the PDM is constructed from the logical name CSI_SYSPDMID
and six zeros. In both cases, this name is used to construct shared
memory segments.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

88 P25-0132-46

You create a PDM initiation script in the following format:

csideflog
-g

-s

-t table name












 CSIPDMINP /path/filename

csideflog
-g

-s

-t table name












 [CSIPDMLOG /path/filename]

csideflog
-g

-s

-t table name












 [xxx_]dbname /path/filename

csideflog
-g

-s

-t table name












 [xxx_]dbname_CSI_PDM_MACS

mac1,[,mac2...,macn]

csideflog
-g

-s

-t table name












 CS I_ AUTOS TART

YES

NO





















csideflog
-g

-s

-t table name












 [CSIPDM /path/csipdm]

Creating a PDM initiation script

System Administration Guide 89

-g

-s

-t table name













Description Required. Specifies the logical name table in which to place the specified
parameters.

Options -g Group logical name table

-s System logical name table

-t table name User logical name table

CSIPDMINP /path/filename

Description Required. Identifies the file containing the PDM input parameters.

Format Valid UNIX file specification

Considerations

♦ Create the input file using a UNIX text editor.

♦ The file to which this logical name points must be unique for each
PDM you wish to start.

CSIPDMLOG /path/filename

Description Optional. Identifies the output file to which the PDM will send all
messages.

Format Valid UNIX file specification

Considerations

♦ If you do not define the logical name CSIPDMLOG, the PDM will
create a file called CSIPDMLOG in your default directory.

♦ The file to which this logical name points must be unique for each
PDM you wish to start.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

90 P25-0132-46

[xxx_]dbname /path/filename

Description Required. Assigns a logical name to the compiled database description
file and places this name in either the group, system or the user logical
name table.

Format [xxx_] (Optional) 1- to 3-character database prefix followed by
an underscore

dbname 6-character database name

/path/filename Valid UNIX file specification for compiled database
description file

Considerations

♦ Define a separate logical name for each database you wish to use.

♦ You must define this logical name before you can format the physical
files for the database.

♦ Groupwide databases may only be accessed by users in the same
group as the initiating task.

♦ Systemwide databases may be accessed by all users of the system.

♦ You may prefer to make the logical assignment for the compiled
database description elsewhere either manually or at system startup.
In this case, it is not needed in the PDM initiation script. Because this
logical name must exist somewhere on the system, you may prefer to
duplicate it in your PDM initiation script rather than to risk omitting it.

♦ The 1- to 3-character prefix allows you to differentiate between
databases of the same name that run in the same PDM. See
“Creating a PDM initiation script” on page 88 for a description of how
to use a database prefix.

♦ The file to which this logical name points must be unique for each
PDM you wish to start.

Creating a PDM initiation script

System Administration Guide 91

[xxx_]dbname_CSI_PDM_MACS mac1,[,mac2...,macn]

Description Required. Specifies a list of machines that can be used on the specified
database, in order of preference (the preferred machine list).
“Understanding automatic PDM startup” on page 111 describes a sample
network environment.

Format [xxx_] (Optional) 1- to 3-character database prefix followed by
an underscore

dbname 6-character database name forming the variable part of
the logical name

mac1 Node name of the first choice machine on which the
database can be used

[,mac2...,macn] Node names of any other machines on which the
database can be used, in order of preference

Considerations
♦ Create a preferred machine list for each database to be used.

♦ If the preferred machine list contains more than one machine, then
duplicate the logical assignments on each machine that might
execute an application.

♦ The logical name dbname_CSI_PDM_MACS must be accessible to
all applications that might access the specified database.

♦ You may prefer to make these logical assignments elsewhere, either
manually or at system startup. In this case, they are not needed in
the PDM initiation script. Because these logical names must exist
somewhere on the system, you may prefer to duplicate them in your
PDM initiation script rather than to risk omitting them.

♦ The PDM can load a database and access its files if they reside on a
different node, provided they are accessible to it (on an NFS-
mounted file system). Files made available this way, however, cannot
reside in a SUPRA Server file system and can only be accessed
using standard UNIX I/O functions. NFS-file access may not be
reliable, so it is advised to keep everything local where possible.

♦ The 1- to 3-character prefix allows you to specify a different preferred
machine list for databases with the same name in the same PDM.
See “Creating a PDM initiation script” on page 88 for a description of
how to use a database prefix.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

92 P25-0132-46

CSI_AUTOSTART
YES

NO











Description Optional. Enables or disables the automatic PDM initiation facility.

Default YES

CSIPDM /path/csipdm

Description Conditional. Required when CSI_AUTOSTART is enabled. Specifies the
path to the csipdm executable image.

Format A valid UNIX path for the csipdm executable image

Consideration This logical name is used by CSIDATBAS to locate the csipdm image
during autostart operations.

Creating a PDM initiation script

System Administration Guide 93

Using a database prefix
A database prefix allows you to distinguish between databases of the
same name that run within the same group or system. This section
describes how to implement a database prefix for groupwide databases.
To apply a database prefix to systemwide databases, substitute -s for -g
in the logical definitions described below.

For example, assume that you have three databases called TESTDB, all
used by tasks with group ID 200 on machine UNIXA. Each database
uses a different compiled database description. You can have only one
group-level logical name: TESTDB, which points to one compiled
database description. The database prefix allows you to distinguish the
other two by creating a group-level logical name xxx_TESTDB for each
database, where xxx is a unique 1- to 3-character identifier, for example,
csideflog -g xxx_TESTDB.

The following figure shows three tasks (TASK-X, TASK-Y, and TASK-Z)
running in group ID 200 on machine UNIXA. They all sign on to a
TESTDB database using the logical name TESTDB. Each task, however,
uses a different compiled database description. To identify the compiled
database descriptions they are accessing, each task defines the process
logical name CSI_PREFIX; for example,
csideflog -p CSI_PREFIX xxx

where xxx is the 1- to 3-character identifier to be used as a prefix to the
logical database name used.

/home/data1
/testdb.mod

DEM_TESTDBPRD_TESTDB TESTDB

TASK-X TASK-Y TASK-Z

gid=200

accesses
TESTDB

accesses
TESTDB

accesses
TESTDB

Machine
UNIXA

points to points to points to

PDM

/home/data2
/testdb.mod

/home/demo
/testdb.mod

Chapter 4 Initiating the SUPRA Server Physical Data Manager

94 P25-0132-46

Considerations for programs that use database prefixes

♦ Each task can define only one value for CSI_PREFIX and can
redefine it to access a different compiled database description. Any
task that omits the logical definition for CSI_PREFIX accesses the
default database identified by the unprefixed logical name TESTDB.

♦ When a task accesses a database, the PDM first attempts to
translate the prefixed database name and then the unprefixed
database name to find the default compiled database description.
Therefore, it is important to define the unprefixed, 6-character logical
name (TESTDB, in this case) pointing to the default compiled
database description.

♦ When you set up a database prefix, consider that if one task loads a
database without a prefix, a subsequent task can define a prefix for
that database and sign on using that prefix. If this happens, the
database is now associated with that prefix, and subsequent tasks
must use the prefixed sign-on name. The first task, however, can still
use the loaded database and sign off without problems.

Once a task has loaded a database with a prefix, it cannot change or
remove the prefix without first unloading the database.

♦ Each database must have the following logical names defined for
each prefix:

 xxx_dbmod /path/dbmod.mod

 xxx_dbmod_CSIPDM_MACS Machine list

 xxx_path Path to database files

 .

 .

 .

 DUMPSLF_xxx_dbmod dumpslf input file

Using a database prefix

System Administration Guide 95

Creating a PDM input file
You identify the PDM input file by defining the group or system-level
logical name CSIPDMINP in the PDM initiation script. The following
shows the parameters in the input file:

[BATCHTHREADS=nnnnn]




















N
Y

=CONSOLE




















N
Y

=DYNSLOCK

[HASHCNT=nnn]
[INTERVAL=nnnn]
[MAXDATA=nnnnn]
[MAXTASKS=nnnn]
[MAXTHREADS=nnn]




















N
Y

=MRELAY




















N
Y

= MULTIHOLD




















OPER1
OPER

=OPERATOR
nn

[PDMNAME=pdmname]




















N
Y

=PROTCHECK

[READAHEAD_THRESHOLD1=nnnnn]
[READAHEAD_THRESHOLD2=nnnnn]
[RETRY=nnn]




















N
Y

=PSIGNAL_TRA




















N
Y

=STATISTICS




















N
Y

=SYSOPCOM

[TIMEOUT=nnnnn]

Chapter 4 Initiating the SUPRA Server Physical Data Manager

96 P25-0132-46

BATCHTHREADS=nnn

Description Optional. Specifies the maximum number of concurrent single-task PDM
applications that the PDM can have per database.

Default 0

Options 1–100

CONSOLE=
Y

N








Description Optional. Specifies whether to display all PDM messages sent to an
operator terminal.

Default Y

Options Y Displays all PDM messages.

N Suppresses all PDM messages except “Reply with a PDM command”
so you can communicate with the PDM via the operator console.

Creating a PDM input file

System Administration Guide 97

DYNSLOCK=
Y

N









Description Optional. Specifies whether you want the data sets in a database to
remain locked if they have been updated by a task that fails to sign off
normally when no task logging is in use.

Warning: Use of the DISABLE/DYNAMIC operator command overrides
this option (if you issue DISABLE/DYNAMIC for the database, then the
files will be unlocked regardless of the dynslock setting, and the
database will be disabled). See “Disabling a database (DISABLE)” on
page 127 for a complete description of DISABLE/DYNAMIC.

Warning: If a task fails to sign off normally when data sets have been
updated and there is no active task log, the updated data sets may be
logically incorrect.

Default Y

Options Y Data sets are to remain locked if the task fails to sign off normally
and updates have been made when no task log is active.

N Data sets are not to remain locked if the task fails to sign off normally
and updates have been made and no task log is active.

Considerations

♦ Setting the parameter value to y keeps file locking consistent with
earlier releases of the PDM.

♦ If the PDM fails and there is no active task log, the updated data sets
will remain locked.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

98 P25-0132-46

HASHCNT=nnn

Description Optional. Specifies the number of buffers to search in the buffer pool for
the requested block. This number also determines the type of buffer
access used. Buffer pools containing less than hashcnt buffers will be
searched sequentially. Buffer pools containing equal to or more than
hashcnt buffers will be searched using a hashing algorithm.

Default 20

Options 10–999

Considerations

♦ This parameter should be changed only after consulting Cincom
Support.

♦ For buffer pools containing very large numbers of buffers, a
performance improvement may be gained by increasing hashcnt.

INTERVAL=nnnn

Description Optional. Specifies the period between the PDM’s attempts to obtain a
held record (measured in seconds).

Default 5

Options 1–1000

Consideration Used by the TIMEOUT and RETRY parameters.

Creating a PDM input file

System Administration Guide 99

MAXDATA=nnnnn

Description Optional. Sets the maximum size of the message buffer used for
communication between the PDM and applications.

Default 4096

Options 0–32,767

Considerations

♦ The message area must be large enough to contain all of the
parameters passed to the PDM. These include the following:

- User data area

- Element list

- Key field

- Status function

- End parameters

♦ The value of MAXDATA * MAXTASKS is roughly equivalent to the
size of one of the PDM’s shared memory segments.

MAXTASKS=nnnn

Description Optional. Specifies the maximum number of allowed concurrent
accesses to the PDM.

Default 50

Options 1–32766

Considerations

♦ You may wish to impose a maximum in order to ensure good
performance for tasks that access the PDM.

♦ The value of MAXDATA * MAXTASKS is roughly equivalent to the
size of one of the PDM’s shared memory segments. Therefore, you
may need to adjust the system parameter for maximum shared
memory size if you use large values.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

100 P25-0132-46

MAXTHREADS=nnn

Description Optional. Specifies the maximum number of threads that the PDM can
have per database.

Default 3

Options 1–100

Considerations

♦ A thread is a function processor; for example, a value of 3 means
three concurrent functions.

♦ The optimum value for MAXTHREADS is the maximum number of
concurrent functions that could be issued to the PDM at a given
instance plus two. The more threads you have, the more concurrent
I/Os you can have. The optimum value will vary from site to site. A
process is created for each thread.

♦ Specifying a low value for MAXTHREADS prevents database
concurrence. Specifying a high value for MAXTHREADS will use
more system resources and create more processing overhead. It is
better to specify a high value than a low value because too few
overlapping threads can inhibit performance.

MRELAY =
Y

N









Description Optional. Specifies whether to send messages output by the PDM and
the system log dump program, cstudslf, to a named pipe.

Default N

Considerations

♦ If you specify Y, users must then write programs to pick up console
messages from the named pipe. If the named pipe fills up, the PDM
keeps a count of the number of messages lost and displays this
number on the next successful send.

♦ You can use MRELAY in conjunction with the logical name
CSI_MRELAY to trap all messages from SUPRA Server
components. See “Writing your own interface to SUPRA Server
PDM” on page 154 for more details about writing a named pipe
reading program to read the PDM messages.

Creating a PDM input file

System Administration Guide 101

MULTIHOLD =
Y

N









Description Optional. Specifies whether a task can explicitly read and hold more than
one record per file in a single COMIT period.

Default Y

OPERATOR=
OPER

OPER1

nn







Description Optional. Identifies the PDM operator terminals.

Default OPER1

Options OPER1–OPER12

Considerations

♦ You can specify only one operator terminal in the input file, although
you can enable more than one terminal as that operator number.

♦ The PDM prompts the specified operator terminal at regular intervals.
Use the csireply utility to respond to the operator prompt.

PDMNAME=pdmname

Description Conditional. Required only if using the multiple systemwide PDM facility.
Specifies the name for the systemwide PDM.

Format 1–8 alphanumeric characters

Considerations

♦ Do not use the pdmname parameter if you are not using the multiple
systemwide PDM facility.

♦ The PDMNAME must be the same as the equivalence string for the
logical name CSI_SYSPDMID.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

102 P25-0132-46

PROTCHECK=
Y

N









Description Optional. Causes the PDM to check the permissions set on data files
before allowing a task to access them.

Default Y

READAHEAD_THRESHOLD1=nnnnn

Description Optional. The number of requests at which the PDM will begin to pre-read
(or readahead) records from the same file with the same parameters.

Default 10

Options 1–32,766

Considerations

♦ For RDNXT, READV and READR, the PDM will only do logical I/Os
(I/Os with no physical access to the disk) to fill the buffer. For
READX, the PDM will perform up to 10 reads to fill the buffer. These
may be logical or physical I/Os.

♦ This option is global—in other words, it applies to all files. Be sure to
consider all possible conditions under which files will be accessed.

♦ Lowering this threshold will cause readahead to engage sooner,
which can cause performance improvement under some conditions,
but can cause problems if the number of requests from the
application is at or close to the threshold.

♦ Buffer size can be controlled with the MAXDATA parameter.

Creating a PDM input file

System Administration Guide 103

READAHEAD_THRESHOLD2=nnnnn

Description Optional. Number of requests of data from the same file before the PDM
begins to do physical I/O to fill the buffers and satisfy the readahead.

Default 100

Options 1–32,766

Considerations

♦ Must be a number between READAHEAD_THRESHOLD1 and
32766.

♦ This option is global—in other words, it applies to all files. Be sure to
consider all possible conditions under which files will be accessed.

♦ Lowering this threshold will cause readahead to engage sooner,
which can cause performance improvement under some conditions,
but can cause problems if the number of requests from the
application is at or close to the threshold.

♦ Buffer size can be controlled with the MAXDATA parameter.

RETRY=nnn

Description Optional. Specifies the number of times the PDM will attempt to obtain a
held record before returning a HELD status.

Default 5

Options 1–100

Consideration The PDM waits for the period specified in INTERVAL before retrying. For
example, INTERVAL = 5 and RETRY = 10 cause a PDM to retry ten
times at five-second intervals. The total elapsed time would be 50
seconds.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

104 P25-0132-46

SIGNAL_TRAP=
Y

N









Description Optional. Causes the PDM to set up only the required signal traps to
operate. If an untrapped signal occurs, the PDM will abort with a core
dump.

Default Y

Options Y Enable signal trapping

N Disable signal trapping

STATISTICS=
Y

N









Description Optional. Indicates whether you want detailed PDM statistics.

Default N

Options Y Collect statistics

N Discard statistics

Considerations

♦ Y sends the statistics to the following:

- The PDM log file as identified by the logical name CSIPDMLOG
in the PDM initiation script. “How to enable the multitask SUPRA
PDM” on page 82 describes the PDM initiation script.

- The named pipe for message reading if MRELAY = Y.

- The csiopcom utility. “Communicating with the SUPRA Server
PDM” on page 119 describes the csiopcom utility to PDM.

♦ See “PDM statistics output” on page 257 for an explanation of the
statistics output.

Creating a PDM input file

System Administration Guide 105

SYSOPCOM=
Y

N









Description Optional. Inhibits the display of the csireply prompt “Reply with a PDM
command” at PDM operator devices.

Default Y

Options Y Enables communication with the PDM via both the csireply utility and
the csiopcom utility

N Enables communication only through csiopcom

TIMEOUT=nnnnn

Description Optional. Specifies the period in number of INTERVALS before a task is
dynamically signed off if it remains inactive.

Default 0 (None, it can stay forever)

Options 0–10,000

Example This example illustrates the contents of a PDM input file, specifying
values for all possible parameters:
CONSOLE=N

INTERVAL=25

MAXDATA=16384

MAXTASKS=10

MAXTHREADS=7

MRELAY=N

MULTIHOLD=Y

OPERATOR=OPER9

PDMNAME=CINCOM

PROTCHECK=Y

RETRY=10

SIGNAL_TRAP=Y

STATISTICS=Y

SYSOPCOM=N

TIMEOUT=2400

Chapter 4 Initiating the SUPRA Server Physical Data Manager

106 P25-0132-46

Enabling/disabling automatic PDM startup (CSI_AUTOSTART)
You can enable or disable automatic PDM initiation by defining the logical
name CSI_AUTOSTART in this format:

csideflog -g CSI_AUTOSTART
yes

no









yes

no









Description Required. Specifies whether automatic PDM initiation is enabled or
disabled.

Default yes

Consideration When CSI_AUTOSTART is enabled, the logical name CSIPDM must be
defined with the path to the csipdm executable image.

Enabling/disabling automatic PDM startup (CSI_AUTOSTART)

System Administration Guide 107

Defining the logical name for the PDM (CSI_PDMID)
CSI_PDMID equates to the 1- to 8-character name of the PDM and must
be defined before PDM initiation. Place the logical definition in the group
or system logical name table according to whether the PDM is groupwide
or systemwide. The format for defining CSI_PDMID is as follows:

csideflog
-g

-s









 CSI_PDMID pdmname

-g

-s









Description Required. Specifies whether the PDM runs groupwide or systemwide.

Options -g Groupwide

-s Systemwide

Considerations

♦ A groupwide PDM may be accessed only by users with the same
group ID as the initiating task.

♦ A systemwide PDM may be accessed by all users on the system.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

108 P25-0132-46

pdmname

Description Required. Specifies the name of the PDM.

Format 1- to 8-character alphanumeric name

Considerations

♦ csidatbas needs to access CSI_PDMID to allow local automatic PDM
startup.

♦ csistr needs to access CSI_PDMID to allow remote automatic PDM
startup.

General consideration

You can make sure that the first PDM initiation is executed manually by
including the logical definition for CSI_PDMID in the PDM initiation script
only. Once you execute the PDM initiation script, CSI_PDMID remains in
the group or system logical name table until the machine goes down or
the CSI_PDMID is explicitly deleted. After the machine is rebooted, you
will have to restart the PDM manually.

 Alternatively, if you want to allow automatic PDM startup even after a
machine close-down, make sure that CSI_PDMID and the other logical
names exist before the first application task attempts to sign-on to the
PDM. You can do this by including the logical name definitions as part of
your system startup.

Defining the logical name for the PDM (CSI_PDMID)

System Administration Guide 109

Defining the logical name for a multiple systemwide PDM
(CSI_SYSPDMID)

CSI_SYSPDMID equates to the 1- to 8-character name of a multiple
systemwide PDM. Place the logical name in the process table for each
process that will use a multiple systemwide PDM. The format for defining
CSI_SYSPDMID is as follows:

csideflog CSI_SYSPDMID pdmname

pdmname

Description Required. Specifies the name of the multiple systemwide PDM.

Format 1–8 alphanumeric characters

Considerations

♦ Use CSI_SYSPDMID only if you wish to have multiple systemwide
PDMs running.

♦ Place the logical name in the process table for each process that will
use a multiple systemwide PDM.

♦ CSI_SYSPDMID takes precedence over CSI_PDMID.

♦ CSIDATBAS needs access to CSI_SYSPDMID to allow automatic
PDM startup.

♦ The PDM input parameter file (pointed to by the logical name
CSIPDMINP) must contain the PDMNAME = xxxxxx entry, where
xxxxxx must be the same as the definition for CSI_SYSPDMID.

♦ All logical names that the systemwide PDM needs to use (dbmods,
preferred machine lists, files, etc.) must be defined in a user logical
name table. The name of this table must be of the form
CSI_PDM_xxxxxxx, where xxxxxxx must be the same as the
definition for CSI_SYSPDMID.

♦ A systemwide PDM may use groupwide and systemwide databases.
The PDM may be accessed by all users on the system.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

110 P25-0132-46

Understanding automatic PDM startup
Automatic PDM initiation starts up a PDM without any user intervention. It
can be used on the first PDM startup as well as to start the PDM again
after a failure. It is initiated and controlled by the first application task that
tries to access a database owned by the PDM.

If the PDM fails due to a hardware, software, or communication fault, the
first task to attempt a database access on the failed PDM restarts it. The
PDM could fail for any of the following reasons:

♦ Hardware fault (a machine check)

♦ Software fault (a PDM abort)

♦ Communication fault (a network error)

The initiating task uses the logical name CSIPDM to locate the csipdm
binary image that will be executed. This logical name should point to one
of the following:

♦ The production binary (csipdm) located in the install directory under
bin.

♦ The debug binary (csipdm_debug) located in the install directory
under dbin.

The initiating task sets up a lock on the PDM preventing other tasks from
restarting the PDM for the same database. Automatic PDM initiation uses
the preferred machine list to identify alternative machines on which the
PDM may run.

Once the PDM has restarted, the lock is released. Other tasks then
execute a dynamic SINON (handled by CSIDATBAS) which makes the
PDM perform a warm start on the database. When the warm start is
complete, the PDM returns a status of DRST (dynamic reset) to each
task. The tasks must then reapply any modifications made since the last
successful COMIT point.

Understanding automatic PDM startup

System Administration Guide 111

Any errors that occur in the startup process (prior to the opening of the
log file by the PDM) are written to a file in the $CSIRESOURCES
directory. The name of the file is composed as the following example
demonstrates:

$CSIRESOURCES/CSI_PDMID_

GROUP

S YS TEM

MULTI_ S YS TEM

















_WIDE.err

This file may contain one of the following errors:
 csipdm: CSIRESOURCES not defined

 csipdm: Could not set CSIPID

 csipdm: Could not set user id to root

 csipdm: Tidy up daemon CSITIDY not running -
 Cannot Continue

 csipdm: Error opening log file ______

 csipdm: Error opening input file _______

The following figure shows an example of a network configuration
consisting of five machines, UNIXA through UNIXE. Three databases,
SUPRAD, TESTDB, and BURRYS are active. TESTDB runs in one copy
of the PDM on machine UNIXB; SUPRAD and BURRYS run in another
copy of the PDM on machine UNIXC. The following tasks access these
databases:

♦ TASK-X on machine UNIXA

♦ TASK-Y on machine UNIXD

♦ TASK-Z on machine UNIXE

Chapter 4 Initiating the SUPRA Server Physical Data Manager

112 P25-0132-46

TASK-Z

Machine
UNIXA

BURRYS

SUPRAD

TASK-X

PDM running databases

TASK-Y

TASK-Z

TASK-Y

TASK-Y

TASK-X

PDM running databases

TESTDB

Machine
UNIXD

Machine
UNIXE

Machine
UNIXC

Machine
UNIXB

accesses
Task-X

TESTDB

accesses
Task-Y

SUPRAD

accesses
Task-Z

SUPRAD

accesses
Task-Z

BURRYS

TASK-X

Both copies of the PDM share the same name. The preferred machine
list logical definitions for the three databases are as follows:
csideflog -g TESTDB_CSI_PDM_MACS UNIXB,UNIXC

csideflog -g SUPRAD_CSI_PDM_MACS UNIXC,UNIXA,UNIXB,UNIXD,UNIXE

csideflog -g BURRYS_CSI_PDM_MACS UNIXC,UNIXE

All three databases have been initiated on the first machine in their
preferred machine list.

Understanding automatic PDM startup

System Administration Guide 113

Assume machine UNIXB fails. The database TESTDB running on
machine UNIXB is no longer available. TASK-X, which is using database
TESTDB from machine UNIXA, will receive a message to say that its
PDM has gone down. The first database access after the PDM failure will
do the following:

1. Look up the first machine on the machine list identified by the logical
name TESTDB_CSI_PDM_MACS. This machine is UNIXB.

2. Discover that UNIXB is unavailable since no started program will
respond.

3. Look up the next machine on the machine list identified by the logical
name TESTDB_CSI_PDM_MACS. This machine is UNIXC.

4. Discover PDM is already running on UNIXC through the starter
program (csistr).

5. Establish communications with the PDM.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

114 P25-0132-46

The following figure illustrates the network configuration after the PDM
completes Step 5.

TASK-Z

Machine
UNIXA

BURRYS

SUPRAD

TASK-X

PDM running databases

TASK-Y

TASK-Z

TASK-Y

TASK-Y

Machine
UNIXD

Machine
UNIXE

Machine
UNIXC

TASK-X

accesses
Task-X

TESTDB

accesses
Task-Y

SUPRAD
accesses
Task-Z

SUPRAD

accesses
Task-Z

BURRYS

TASK-X

Machine
UNIXB

goes down

TESTDB

If machine UNIXC now fails, all tasks connected to it are disconnected.
The next task to access SUPRAD starts the PDM on UNIXA (the next
machine in the preferred machine list for SUPRAD). The PDM is then
local for TASK-X, also running on UNIXA. TASK-Y on UNIXD and
TASK-Z on UNIXE will connect to UNIXA when they next access
SUPRAD.

Understanding automatic PDM startup

System Administration Guide 115

Any application task that tries to use TESTDB receives a NMAC (No
machine) status code because the preferred machine list (UNIXB,
UNIXC) has been exhausted. However, if either UNIXB or UNIXC
becomes available before a task attempts to access TESTDB, the PDM
for that database restarts there.

The next task to access BURRYS starts it on UNIXE, which is the next
machine on the BURRYS preferred machine list. The following figure
illustrates the new machine configuration.

TASK-Z

Machine
UNIXA

TASK-Y

TASK-Y

Machine
UNIXD

Machine
UNIXE

TASK-X

Machine
UNIXB
is down

TASK-X

Machine
UNIXC

goes down

PDM running database

SUPRAD

TASK-X

accesses
Task-Y

SUPRAD

accesses
Task -Z

BURRY'S

BURRYS

TASK-Z

accesses
Task -Z

SUPRAD

Chapter 4 Initiating the SUPRA Server Physical Data Manager

116 P25-0132-46

Single-task PDM
The single-task SUPRA PDM runs in the application process. The
application is linked with csibatbas.o instead of csidatbas.o. csibatbas.o
contains all of the logic to perform PDML functions. This makes single-
task SUPRA PDM applications somewhat larger than multitask SUPRA
PDM applications. The benefit of single-task SUPRA PDM is increased
performance, especially in a stand-alone batch environment.

The application task and the PDM logic communicate through the
database access program, csibatbas. The application programmer codes
PDML calls identical to the PDML calls for multitask SUPRA PDM, using
the entry point DATBAS. These calls are transferred to the SUPRA PDM
logic through direct calls. When processing is complete, SUPRA PDM
passes the results of the functions directly to the application program.

When the application program executes the SINON PDML function, it
initiates the single-task SUPRA PDM. The SINOF PDML function
deinitializes the single-task SUPRA PDM system. There are two modes
of operation for single-task SUPRA PDM, concurrent and stand-alone.

Concurrent mode
In concurrent mode, the multitask PDM is required to be running prior to
executing a single-task application. The multitask PDM may be brought
up by using the pdm_startup script or the single-task PDM will bring it up
automatically if the CSI_AUTOSTART logical name is set to YES. The
PDM input parameter BATCHTHREADS must be set to 1 or more for
single-task applications to operate. (A BFUL error will result if the
BATCHTHREADS are exhausted.) In concurrent mode, system logging is
fully operational for both single-task and multitask SUPRA PDM
applications.

When running in concurrent mode, multiple single-task SUPRA PDMs
may access the same database files in UPDATE mode concurrent with a
multitask SUPRA PDM accessing the database files in UPDATE mode.
This is possible because both single-task and multitask SUPRA PDM
share the same copy of the loaded dbmod, which contains the record
holding table and the buffer pools. This mode of operation is only
available on the HP-UX platform.

Single-task PDM

System Administration Guide 117

Stand-alone mode
In stand-alone mode, the multitask SUPRA PDM and all other single-task
applications must be shut down prior to executing a single-task
application. This was the standard operation of single-task SUPRA PDM
in prior releases and is now the default operating mode. In stand-alone
mode, it is not possible to run system logging. Task logging and recovery,
however, are fully operational in both concurrent and stand-alone modes
of operation.

The mode of operation of single-task SUPRA PDM depends on the
platform and the value of the logical name CSI_BATCH_CONCURRENT.
The stand-alone mode is the only mode available for the NCR3000, AIX,
and Digital UNIX platforms. For the HP-UX platform, the concurrent
mode of operation is optional. On this platforms it is possible to run
single-task applications in concurrent mode by defining the logical name
CSI_BATCH_CONCURRENT as YES. By default the mode of operation
is stand-alone.

Chapter 4 Initiating the SUPRA Server Physical Data Manager

118 P25-0132-46

5
Communicating with the SUPRA
Server PDM

SUPRA Server PDM runs as a background process. Because of this, you
can communicate with the PDM using a set of PDM operator commands.
These operator commands allow the following controls:

♦ Controlled shutdown of the SUPRA Server PDM

♦ Temporary disabling of the SUPRA Server PDM

♦ Display of loaded databases, tasks, and statistics

♦ Disabling, unloading, and mode changing of databases

♦ Invocation of system-log dumping of databases

System Administration Guide 119

Entering PDM operator commands
You enter PDM operator commands in one of two ways:

♦ Using csiopcom. A screen based utility which allows commands to
be typed at a command line or selected through a menu. csiopcom
also provides comprehensive online Help. Commands given through
the csiopcom application are sent to the PDM using the OPCOM
DML function (through DATBAS). Therefore, it is only possible to
send commands to a SUPRA Server PDM which is accessible to
your effective group ID.

 csiopcom does allow commands to be sent to PDMs running on
other nodes in your network with the same group rules applying. The
default is set to allow informational commands only (display
commands) for all users except the supervisor. However, you have a
facility that allows you to create authorization files on a per user basis
if you wish for some users to have access to some of the potentially
more dangerous commands. See “Communicating with SUPRA
Server PDM using csiopcom” on page 148 for additional information
about csiopcom.

 You use the csioauth utility to create authorization files. The csioauth
utility is a screen-based program that operates through a series of
YES/NO questions and creates an authorization file. The utility can
only be run by users possessing the DBAPRV privilege. See
“Understanding user privileges” on page 57 for a discussion on
privileges. This utility prevents users from creating privilege files of
their own. When csiopcom is invoked, the privilege file is picked up
through the logical name CSIOPCOM_AUTH.

♦ Using csireply. A command line application run from the shell. This
application allows PDM commands to be sent to ANY PDM on the
node from which the command is issued. Using csireply, any
operator command can be issued to the PDM. The csireply
command can only be run by users possessing the REPLY privilege.
See “Understanding user privileges” on page 57 for a discussion of
privileges.

Chapter 5 Communicating with the SUPRA Server PDM

120 P25-0132-46

Eleven PDM operator commands are available; however, you may not
wish to give all users access to all these commands. If you are
communicating with the PDM through csiopcom, you can use the user
authorization program csioauth to restrict a set of commands to an
individual user. The csioauth program can create a user authorization file
that is used by the csiopcom program through the logical name
CSIOPCOM_AUTH.

Users of the csireply command can use any of the 11 PDM operator
commands. To communicate with the PDM using the csireply command,
see “Communicating with the PDM using the csireply command” on
page 160.

The user authorization file applies only to users communicating with the
PDM through csiopcom.

You can also write your own interface to SUPRA Server PDM. “Writing
your own interface to SUPRA Server PDM” on page 154 describes how
to direct the SUPRA Server PDM messages to a named pipe that can be
read by a user-written program. The interface provides an example
program in pseudocode to read from the named pipe. See “Example
mailbox read program” on page 263 for an example of a named-
pipe-reading program written in C programming language.

Entering PDM operator commands

System Administration Guide 121

Controlling the PDM with operator commands
The SUPRA Server PDM operator commands control PDM usage. The
PDM recognizes the following operator commands:

Command Description
ACTIVATE Enables the use of an index.
DEACTIVATE Disables the use of an index.
DISABLE Unloads one or all database(s) from the PDM

and prevents anyone else from reloading.
DISPLAY Displays the status of loaded databases, the

status of signed-on tasks, or statistics.
DUMPSLF Dumps a system log component manually.
ENABLE Cancels the DISABLE restriction.
POPULATE Rebuilds an index and activates it.
PRINT Produces a file that is defined by the logical

name CSI_DMPANL.
READONLY Sets one or all database(s) to read-only

processing.
SHUTDOWN Unloads all databases and shuts down the

PDM.
UNLOAD Unloads one or all databases from the PDM.
UPDATE Cancels the READONLY restriction.

Chapter 5 Communicating with the SUPRA Server PDM

122 P25-0132-46

Activating an index (ACTIVATE)
The ACTIVATE command enables the use of an index as well as the
automatic updating of the index by SUPRA Server PDM. Each change to
the data file is reflected by corresponding changes to the index file(s).
Changes to the index file include updating, adding, or deleting index
records.

ACTIVATE index [xxx_]database-name [][group - name]

 [AT node-name]

index

Description Required. Specifies the index file to be activated for logging.

Format dsetIXyy

where: dset = 4-character data set name

 IX = entered as shown

 yy = 2-character index name

Consideration If the index has been deactivated for any length of time, run the check
option of the index maintenance utility program identified by the logical
CSTUIDX. This checks the index records and updates them where
necessary, and automatically activates the index.

[xxx_]database-name

Description Required. Identifies the database for which index logging is to take effect.

Format xxx_ 1–3 alphanumeric characters followed by “_” (optional
database prefix)

database-name 6 alphanumeric characters

Consideration If the database is prefixed, the 6-character database name will be
preceded by the 1- to 3-character prefix name and an underscore. If no
prefix is used, the database name will always be 6-characters.

Controlling the PDM with operator commands

System Administration Guide 123

[][group - name]

Description Optional. Identifies the group if more than one database of the same
name is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters

AT node-name

Description Optional. Directs the command to the remote PDM running at the
specified node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the csiopcom utility (see “Communicating with SUPRA
Server PDM using csiopcom” on page 148).

Chapter 5 Communicating with the SUPRA Server PDM

124 P25-0132-46

Deactivating an index (DEACTIVATE)
The DEACTIVATE command disables the use of an index as well as the
automatic updating of the index by SUPRA Server PDM. This means the
index file is no longer updated to match the data set file.

DEACTIVATE index [xxx_]database-name [][group - name]

 [AT node-name]

index

Description Required. Specifies the index file for which logging is to be deactivated.

Format dsetIXyy

where: dset = 4-character data set name

 IX = entered as shown

 yy = 2-character index name

Consideration Before reactivating the index, run the check option of the index
maintenance utility program, CSTUIDX, to check the index records and
update them where necessary. Check automatically activates the index.

[xxx_]database-name

Description Required. Identifies the database for which index logging is to take effect.

Format xxx_ 1–3 alphanumeric characters followed by “_” (optional
database prefix)

database-name 6 alphanumeric characters

Consideration If the database is prefixed, the 6-character database name will be
preceded by the 1- to 3-character prefix name and an underscore. If no
prefix is used, the database name will always be 6 characters.

Controlling the PDM with operator commands

System Administration Guide 125

[][group - name]

Description Optional. Identifies the group number if more than one database of the
same name is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters

AT node-name

Description Optional. Passes the command to the remote PDM running at the
specified node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the csiopcom utility (see “Communicating with SUPRA
Server PDM using csiopcom” on page 148).

Chapter 5 Communicating with the SUPRA Server PDM

126 P25-0132-46

Disabling a database (DISABLE)
The DISABLE command signs off each task using the database
according to the parameter, and then it unloads the specified database.
Once unloaded, you cannot reload the database until you cancel the
DISABLE command by entering the ENABLE command (see “Enabling a
database (ENABLE)” on page 135). (See also the UNLOAD command in
“Unloading a database (UNLOAD)” on page 144.) You can also use the
STATISTICS parameter of disable to disable the printing of statistics into
the log file, if the database is enabled and loaded.

DISABLE































DEBUG
STATISTICS
/DYNAMIC
/FORCE
/SINOF
/COMIT

database - name [[group - name]]

ALL








 [AT node-name]

Controlling the PDM with operator commands

System Administration Guide 127































DEBUG
STATISTICS
/DYNAMIC
/FORCE
/SINOF
/COMIT

Description Required. Specifies the object(s) of the DISABLE command.

Options /COMIT Signs off each task after its next COMIT or RESET.

/SINOF Waits until the last task has signed off.

/FORCE Resets any uncommitted updates and signs off each
task immediately.

/DYNAMIC Dynamically signs off all tasks; unloads and disables the
database.

STATISTICS Disables the printing of statistics into the log file.

DEBUG Disables the printing of function and status messages at
the beginning and end of each function.

Warning: Use of the DISABLE/DYNAMIC operator command overrides
the dynslock setting (if you issue DISABLE/DYNAMIC for the database,
then the files will be unlocked regardless of the dynslock setting, and the
database will be disabled).

Considerations
♦ Use the ENABLE command to cancel these restrictions.

♦ The DISABLE/DYNAMIC command is designed particularly for
CONTROL:Manufacturing sites. If a task gets dynamically signed off
from a database for which you have entered DISABLE/DYNAMIC,
then all other tasks running on that database will be forced to sign off,
and the database will be disabled.

♦ The DISABLE/DYNAMIC command overrides the file-locking option
provided by the DYNSLOCK PDM input parameter.

♦ Use the DISABLE/DYNAMIC command when that database is likely
to contain logical data corruption. For example, a task which has
updated a data set fails to sign off normally when there is no active
task log.

Chapter 5 Communicating with the SUPRA Server PDM

128 P25-0132-46

database - name

ALL








Description Required. Specifies a particular database or all databases.

Format 6-, 8-, 9-, or 10- character database name or ALL

Considerations

♦ The ALL option dynamically signs off each task and disables and
unloads all databases.

♦ The ALL option is not valid with /DYNAMIC.

♦ Under /DYNAMIC, you must code a database name.

[[group-name]]

Description Optional. Specifies a group if more than one database of the same name
is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

AT node-name

Restriction Use this parameter only if you are communicating with a remote PDM
through the csiopcom utility (see “Communicating with SUPRA Server
PDM using csiopcom” on page 148).

Description Optional. Directs the command to the PDM running at the specified node.

Default If you omit this parameter, the command will be directed to the local
PDM.

Format 1–255 alphanumeric characters

Controlling the PDM with operator commands

System Administration Guide 129

Displaying a database (DISPLAY)
The DISPLAY command lists some or all of the following details on the
screen according to the parameters you specify:

♦ The database name

♦ Whether the database is loaded in systemwide or groupwide global
sections

♦ Group ID and name

♦ The number of bytes in memory taken up by the database

♦ The state of the database (Fail, Inactive, or Active)

♦ The number of active tasks

♦ The number of active functions

♦ The number of active threads

♦ Database statistics

DISPLAY

/ DATABASES

/ TASKS

/ STATISTICS

















database - name [[group - name]]

ALL








[]/ =FILE data - set []AT node - name

Chapter 5 Communicating with the SUPRA Server PDM

130 P25-0132-46

/ DATABASES

/ TASKS

/ STATISTICS

















Description Required. Specifies the object(s) of the display function.

Options /DATABASES Displays the status of one or all loaded databases.

/TASKS Displays the status of one or all signed-on tasks.

/STATISTICS Displays statistics for one data set connected to the
specified database or all databases to which the
specified data set is connected.

Considerations

♦ Using DISPLAY /STATISTICS may tie up your terminal for some time
unless you use the SET OUTPUT (file-spec) csiopcom command to
direct output to a disk file (see “Communicating with SUPRA Server
PDM using csiopcom” on page 148).

♦ If you are using Multiple Physical Databases, you can display
statistics for all databases to which the specified data set is
connected by entering:

 display/statistics all /file=data-set

database - name

ALL








Description Required. Specifies a particular database or all databases.

Format 6-, 8-, 9- or 10-character alphanumeric database name or ALL

Consideration The ALL option dynamically signs off each task and disables and unloads
all databases.

Controlling the PDM with operator commands

System Administration Guide 131

[[group-name]]

Description Optional. Specifies a group if more than one database of the same name
is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

/FILE=data-set

Description Optional. Specifies the data set for which statistics are requested.

Format A valid UNIX file name

AT node-name

Restriction Use this parameter only if you are communicating with a remote PDM
through the csiopcom utility (see “Communicating with SUPRA Server
PDM using csiopcom” on page 148).

Description Optional. Directs the command to the PDM running at the specified node.

Default If you omit this parameter, the command will be directed to the local
PDM.

Format 1- to 255-character alphanumeric node name

Chapter 5 Communicating with the SUPRA Server PDM

132 P25-0132-46

Dumping a database (DUMPSLF)
The DUMPSLF command causes the PDM to dump the contents of
system log file components. You must dump the contents of each system
log file component before the PDM can reuse it, and before you can run
system log recovery.

The PDM usually carries out this procedure automatically. However, after
a system failure, one or both log files may contain data that has not yet
been dumped. Alternatively, you may wish to dump remaining data in
order to have a complete system log history. You may need this log
history in order to run the recovery program, (the PDM does not
automatically dump the system log file if it is not full).

Use the DUMPSLF command in the following situations:

♦ To dump one or both system log file components manually before
starting system level recovery

♦ To dump data from a system log that is not full

Refer to the SUPRA Server PDM Database Administration Guide (UNIX
& VMS), P25-2260, for a description of system log recovery.

DUMPSLF database-name [group-name] [AT node-name]

database-name

Description Required. Specifies the database for which the system log file is to be
dumped.

Format 6, 8, 9, or 10 alphanumeric characters

Consideration You cannot dump an active system log file (e.g. if after-image records are
still being logged to it). Use the UNLOAD command (see “Unloading a
database (UNLOAD)” on page 144) or the DISABLE command (see
“Disabling a database (DISABLE)” on page 127) to sign off these tasks.

Controlling the PDM with operator commands

System Administration Guide 133

[[group-name]]

Description Optional. Specifies the group name if more than one database of the
same name is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

AT node-name

Restriction Use this parameter only if you are communicating with a remote PDM
through the csiopcom utility (see “Communicating with SUPRA Server
PDM using csiopcom” on page 148).

Description Optional. Directs the command to the PDM running at the specified node.

Default If you omit this parameter, the command will be directed to the local
PDM.

Format 1–255 alphanumeric characters

Chapter 5 Communicating with the SUPRA Server PDM

134 P25-0132-46

Enabling a database (ENABLE)
The ENABLE command cancels the restriction imposed by the DISABLE
command (see “Disabling a database (DISABLE)” on page 127), allowing
tasks to reload a previously disabled database.

ENABLE



















DEBUG
STATISTICS
ALL

name- database

 [][]group - name []AT node - name



















DEBUG
STATISTICS
ALL

name- database

Description Required. Specifies the object of the ENABLE command.

Format 6, 8, 9, or 10 alphanumeric characters

Options database-name Cancels the restriction imposed by the DISABLE
command on the specified database.

ALL Cancels the restriction imposed by the DISABLE
command on all databases.

STATISTICS Sends output to the PDM log file and to OPCOM DML
(csiopcom). The only place that does not receive output
is the operator device.

DEBUG Starts printing function and status messages to the PDM
log file for each PDML function received.

[][]group - name

Description Optional. Specifies a group, if more than one database of the same name
is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

Controlling the PDM with operator commands

System Administration Guide 135

[]AT node - name

Restriction Use this parameter only to communicate with a remote PDM through the
csiopcom utility (see “Communicating with SUPRA Server PDM using
csiopcom” on page 148).

Description Optional. Directs the command to the PDM running at the specified node.
Omit the AT keyword to pass the command to the local PDM.

Format 1–255 alphanumeric characters

Chapter 5 Communicating with the SUPRA Server PDM

136 P25-0132-46

Populating an index (POPULATE)
The POPULATE command populates and activates one index file, which
is defined in a currently loaded database, by reading records from the
data file and writing corresponding index records to the index file. Once
you have run POPULATE, the index is ready for use.

POPULATE index database-name [[group-name]]

 [AT node-name]

index

Description Required. Specifies the data set to write index records in.

Format dsetIXyy

where: dset = 4-character data set name

 IX = entered as shown

 yy = 2-character index name

database-name

Description Required. Specifies the database in which the index is defined.

Format 6, 8, 9, or 10 alphanumeric characters

Consideration If the database is prefixed, the 6-character database name will be
preceded by the 1- to 3-character prefix name and an underscore. If no
prefix is used, the database name will always be 6 characters.

[[group-name]]

Description Optional. Specifies the group name, if more than one database of the
same name is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

Controlling the PDM with operator commands

System Administration Guide 137

AT node-name

Description Optional. Directs the command to the PDM running at the specified node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command will be directed to the local
PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the csiopcom interface (see “Communicating with SUPRA
Server PDM using csiopcom” on page 148).

General considerations for the POPULATE command

♦ The POPULATE command always formats a new index file before
writing the index records. If you defined a shadow index, POPULATE
copies the completed main index to the shadow index file.

♦ If population of the main index file fails, both the main and the
shadow index files are marked as invalid.

♦ The POPULATE command locks the data set associated with the
index for the duration of the populate operation. It attempts to obtain
control of the data set based on the values of RETRIES and
INTERVAL (see “Initiating the SUPRA Server Physical Data
Manager” on page 81). If it cannot obtain control of the data set, the
populate operation is abandoned. Any attempt to access the data set
during the populate operation will result in a HELD status being
returned to the application after the specified number of retries.

♦ The populate operation writes messages to the CSIPDMLOG file as
the operation proceeds. These messages are the same as those
displayed interactively by the Index Utility program described in the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260.

Chapter 5 Communicating with the SUPRA Server PDM

138 P25-0132-46

Printing PDM memory (PRINT)
The PRINT command produces a file that is defined by the logical name
CSI_DMPANL. This file contains a dump of PDM memory that is used by
the csidmpanl utility to produce a readable ASCII-text report. For
information on csidmpanl, see “csidmpanl” on page 247.

PRINT database-name [[group-name]]

database-name

Description Required. Specifies the database for which memory is to be dumped.

Options 6, 8, 9, or 10 alphanumeric characters

Consideration If the database is prefixed, the 6-character database name will be
preceded by the 1- to 3-character prefix name, and an underscore. If no
prefix is used, the database name will always be 6 characters.

[[group-name]]

Description Optional. Specifies the group name if more than one database of the
same name is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

Controlling the PDM with operator commands

System Administration Guide 139

Setting a database to READONLY access (READONLY)
The READONLY command sets the specified database or all databases
to READONLY access, dynamically signs off all active update tasks in
the database(s), and unloads the specified database(s). (See “Unloading
a database (UNLOAD)” on page 144, and the “Setting a database to
UPDATE access (UPDATE)” on page 146.)

READONLY

/ COMIT

/ SINOF

/ FORCE

















database - name [[group - name]]

ALL








[AT node-name]

/ COMIT

/ SINOF

/ FORCE

















Description Required. Specifies how tasks are to be signed off.

Options /COMIT Signs off each task after its next COMIT or RESET.

/SINOF Waits until the last task has signed off.

/FORCE Resets any uncommitted updates and signs off each
task immediately.

Chapter 5 Communicating with the SUPRA Server PDM

140 P25-0132-46

database - name

ALL








Description Required. Specifies whether one or all databases are to be set to
READONLY access.

Format 6-, 8-, 9- or 10-character alphanumeric database name or ALL

Options database-name Specifies the database to be set to READONLY access.

ALL Specifies that all current databases be set to
READONLY mode, as well as any databases loaded
later.

Considerations
♦ Use the UPDATE command to cancel the READONLY restriction.

♦ If you use all with the READONLY command, you must also specify
the ALL parameter with the UPDATE command. SUPRA Server
PDM will not allow you to set all databases to READONLY access
and then cancel the restriction for a specified database.

[[group-name]]

Description Optional. Specifies a group if more than one database of the same name
is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

AT node-name

Restriction Use this parameter only if you are communicating with a remote PDM
through the csiopcom utility (see “Communicating with SUPRA Server
PDM using csiopcom” on page 148).

Description Optional. Directs the command to the PDM running at the specified node.

Default If you omit this parameter, the command will be directed to the local
PDM.

Format 1–255 alphanumeric characters

Controlling the PDM with operator commands

System Administration Guide 141

Shutting down a database (SHUTDOWN)
The SHUTDOWN command signs off all tasks according to the
parameter you specify, unloads all loaded databases, and then
terminates the PDM process. Any connected tasks get an ENDT status.
SHUTDOWN implicitly disables automatic restart. However, automatic
startup will still occur if a new task attempts to access the PDM. You can
start up the PDM manually if you wish. See “Initiating the SUPRA Server
Physical Data Manager” on page 81 for a description of PDM initiation
procedures.

SHUTDOWN

/ COMIT

/ SINOF

/ FORCE

















 pdmname []AT node - name

/ COMIT

/ SINOF

/ FORCE

















Description Required. Specifies how tasks are to be signed off.

Options /COMIT Signs off each task after its next COMIT or RESET.

/SINOF Waits until the last task has signed off.

/FORCE Resets any uncommitted updates and signs off each
task immediately.

Consideration Any new task attempting a database sign-on will reinitialize the PDM, if
automatic PDM initiation is enabled with the logical name
CSI_AUTOSTART. Automatic PDM initiation requires the script named in
the logical CSI_nnnnnn if starting from a remote node.

pdmname

Description Defined by the logical CSIPDMID or CSI_SYSPDMID for multi-
systemwide PDMs.

Chapter 5 Communicating with the SUPRA Server PDM

142 P25-0132-46

AT node-name

Restriction Use this parameter only to communicate with a remote PDM through the
csiopcom interface (see “Communicating with SUPRA Server PDM using
csiopcom” on page 148.)

Description Optional. Directs the command to the PDM running at the specified node.

Default If you omit this parameter, the command will be directed to the local
PDM.

Format 1–255 alphanumeric characters

Controlling the PDM with operator commands

System Administration Guide 143

Unloading a database (UNLOAD)
The UNLOAD command unloads the specified database or all databases
after first signing off each task using it. The database can be reloaded by
any subsequent task attempting a sign-on. If you wish to unload the
database and prevent any new tasks from reloading it, use the DISABLE
command (see “Disabling a database (DISABLE)” on page 127).

UNLOAD

/ COMIT

/ SINOF

/ FORCE

















database - name

ALL








 [][]group - name

[]AT node - name

/ COMIT

/ SINOF

/ FORCE

















Description Required. Specifies how tasks are to be signed off.

Options /COMIT Signs off each task after its next COMIT or RESET.

/SINOF Waits until the last task has signed off.

/FORCE Resets any uncommitted updates and signs off each
task immediately.

database - name

ALL








Description Required. Specifies whether to unload one or all databases.

Format 6-, 8-, 9- or 10-character alphanumeric database name or ALL

Chapter 5 Communicating with the SUPRA Server PDM

144 P25-0132-46

[[group-name]]

Description Optional. Specifies a group if more than one database of the same name
is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

[AT node-name]

Restriction Use this parameter only to communicate with a remote PDM through the
csiopcom utility (see “Communicating with SUPRA Server PDM using
csiopcom” on page 148).

Description Optional. Directs the command to the PDM running at the specified node.

Default If you omit this parameter, the command will be directed to the local
PDM.

Format 1–255 alphanumeric characters

Controlling the PDM with operator commands

System Administration Guide 145

Setting a database to UPDATE access (UPDATE)
The UPDATE command cancels the READONLY command, setting all
specified databases to allow UPDATE access.

UPDATE
database - name [[group - name]]

ALL








 []AT node - name

database - name

ALL








Description Required. Specifies whether one or all databases are to be set to
UPDATE access.

Format 6-, 8-, 9-, or 10-character alphanumeric database name or ALL

Considerations
♦ The UPDATE command does not load databases unloaded by the

READONLY command.

♦ If you set all databases to READONLY mode using READONLY ALL,
you must use UPDATE ALL to cancel this restriction. If you set a
specified database to READONLY mode, you must explicitly specify
that database with the UPDATE command to cancel the restriction.

 For example, after the following sequence of commands through the
csiopcom utility, the database TESTDB remains in READONLY
mode:

 ==>readonly/comit testdb[125]

 ==>readonly/force all

 ==>update all

 After you issue the UPDATE ALL, the PDM displays the following
message:

 CSTI156I All databases are now available for update

 However, the database TESTDB remains in READONLY mode
because the UPDATE ALL command affects only those databases
unloaded by the READONLY ALL command. TESTDB, having
already been set to READONLY, is not affected by READONLY ALL
or UPDATE ALL. To cancel the READONLY restriction on TESTDB,
specify the database name with the UPDATE command as follows:

 UPDATE TESTDB[125]

Chapter 5 Communicating with the SUPRA Server PDM

146 P25-0132-46

[[group-name]]

Description Optional. Specifies a group if more than one database of the same name
is loaded in different groups.

You must enclose the group name in one set of brackets. The outer set
of brackets indicates this item is optional.

Format 1–255 alphanumeric characters enclosed in brackets

AT node-name

Restriction Use this parameter only to communicate with a remote PDM through the
csiopcom utility (see “Communicating with SUPRA Server PDM using
csiopcom” on page 148).

Description Optional. Directs the command to the PDM running at the specified node.

Default If you omit this parameter, the command will be directed to the local
PDM.

Format 1–255 alphanumeric characters

Controlling the PDM with operator commands

System Administration Guide 147

Communicating with SUPRA Server PDM using csiopcom
csiopcom is a screen-based user interface through which you can enter
PDM operator commands. In addition to context-related, online Help, a
pop-up menu from which to select PDM operator commands with a single
keystroke, and function key support, csiopcom offers two csiopcom
commands, LIST and SET.

csiopcom allows you to communicate with any PDM on the network.
Therefore, you must always specify the AT node name parameter to the
PDM operator command to access a remote PDM.

No special privileges are needed to use csiopcom. However, you should
ensure that each user has access to a user authorization file through the
logical name CSIOPCOM_AUTH. You create user authorization files
using the csioauth program (see “Restricting usage of PDM commands
using the csioauth program” on page 156). Without a user authorization
file, csiopcom users with root privilege can access all PDM operator
commands. csiopcom users without these privileges may access only the
DISPLAY command.

To run csiopcom and issue SUPRA Server PDM operator commands,
type csiopcom. The initial screen displays the Cincom copyright notice.

 SUPRA PDM Operator Interface 1.0

 (c) Cincom Systems, Inc. 1992
 Use of this software is governed by a license
 agreement. This software contains confidential
 and proprietary information of Cincom Systems,
 Inc. which is protected by copyright, trade
 secret, and trademark law.

==> DISPLAY/DATABASES
<F1>=Refresh <F2>=Help <F3>=List Cmds <CTRL/D>=Exit

Chapter 5 Communicating with the SUPRA Server PDM

148 P25-0132-46

You can enter any authorized PDM operator command on the command
line at the bottom of the screen. Enter PDM commands in the following
format:

PDM command /qualifier parameter []at node - name

For example:
 shutdown /comit testpdm at UNIX2

The csiopcom interface supports the following function keys:

♦ PF1. Refreshes the screen display

♦ PF2. Displays context-related, online Help

♦ PF3. Lists the PDM commands you are authorized to use in a pop-up
menu

Press CTRL-D or type Quit at the command line, to exit to shell.

Refreshing the screen. Press function key PF1 to refresh the screen
and delete any characters from the command line.

Communicating with SUPRA Server PDM using csiopcom

System Administration Guide 149

Displaying online Help. If you have defined the logical name
SUPRA_HELP, you can press function key PF2 at any stage during
csiopcom processing to display context-related help. For example, if you
type display at the command line and then press function key PF2, the
following Help screen displays:

csiopcom

DISPLAY

Displays the current status of specified databases or tasks,
listing the following details on the screen according to the
parameters and qualifiers you specify:

 o Database name (6, 8, 9 or 10 characters)
 o If the database is loaded in system-wide (S) or group-wide
 (G) global sections
 o group id and name
 o The number of bytes in memory taken up by the database
 o The state of the database, Fail, Inactive or Active
 o The number of active tasks
 o The number of active functions
 o The number of active threads
 o PDM statistics

Press RETURN to continue ...

The online Help is useful if you are unsure of the syntax of a PDM
command.

Chapter 5 Communicating with the SUPRA Server PDM

150 P25-0132-46

Displaying a pop-up menu that lists PDM commands. The DBA can
use the csioauth command to restrict the PDM commands available to
certain users. Press function key PF3 to display the PDM commands
(that you have been authorized to use) in a pop-up menu.

SUPRA PDM Operator Interface 1.0

 Valid SUPRA PDM
 commands are :

 A - DISPLAY
 B - UNLOAD
 C - SHUTDOWN
 D - READONLY
 E - UPDATE
 F - DISABLE
 G - ENABLE
 H - DUMPSLF
 I – PRINT
 J – ACTIVATE
 K – DEACTIVATE
 L – POPULATE

 Select option letter or
 press RETURN to exit :

==>
<F1>=Refresh <F2>=Help <F3>=List Cmds <CTRL/D>=Exit

The above example shows access to all the PDM operator commands.
Type the key letter (A through L) to select a PDM command. Do not
press RETURN. csiopcom displays the command keyword (DISPLAY,
UNLOAD, SHUTDOWN, etc.) at the command line ready for you to type
any qualifiers and parameters. When you press RETURN after entering a
PDM command, the screen clears, and the output from the command is
displayed at the top left of the screen.

Communicating with SUPRA Server PDM using csiopcom

System Administration Guide 151

Using csiopcom commands: LIST, REDO, SET and QUIT. csiopcom
supports four commands, LIST, REDO, SET, and QUIT. These
commands are not for communication with the PDM, although their
syntax is similar to that of PDM commands.

LIST

Description Displays all authorized SUPRA Server PDM commands in a window from
which you can select a command.

Considerations

♦ Do not use this command when running in batch.

♦ This command works only from the csiopcom utility. It is equivalent to
pressing function key PF3.

REDO

Description Allows the previous command to be re-executed without retyping it.

Consideration May be abbreviated by simply typing r or R.

Chapter 5 Communicating with the SUPRA Server PDM

152 P25-0132-46

The SET command sends input to and output from csiopcom to both the
terminal and a disk file, or to a disk file only.

SET

LOG ()

NOLOG

OUTPUT ()

NOOUTPUT

file - name

file - name



















LOG ()

NOLOG

OUTPUT ()

NOOUTPUT

file - name

file - name



















Description Required. Specifies the disposition of csiopcom logging.

Format Valid UNIX file specification

Options LOG (file-name) Logs all input and output to the specified file, and
displays it on the terminal screen.

NOLOG Terminates logging.

OUTPUT (file-name) Sends all input and output to the specified file.

NOOUTPUT Sends output to the screen.

Considerations
♦ You can enter the SET command only from the csiopcom utility to the

PDM.

♦ The SET OUTPUT (file-name) command is particularly useful with
the DISPLAY STATISTICS PDM operator command. It allows you to
send the statistics to a file without scrolling through the entire display
on your terminal.

QUIT

Description Exits CSIOPCOM and returns to the shell.

Consideration Equivalent to CTRL-D.

Communicating with SUPRA Server PDM using csiopcom

System Administration Guide 153

Writing your own interface to SUPRA Server PDM
You can write your own user interface to the PDM using the OPCOM
DML command. Refer to the SUPRA Server PDM Programming Guide
(UNIX & VMS), P25-0240, and the Message Relay Facility described
below.

SUPRA Server PDM messages are output by the central PDM image
(csipdm), by csidatbas, and by the System Log Dump Program (cstudslf).
To direct these messages to a named pipe that you can then read from
your program, you must define the following items:

♦ The logical name, CSI_MRELAY, that causes all messages from
csidatbas to go to a named pipe.

♦ The number of messages SUPRA Server PDM can send to the
named pipe is determined by the maximum size of a named pipe on
your system (the name of the system parameter varies). The
following may be reasons that the PDM cannot send any more
messages to the named pipe:

- There is no active named-pipe-reading program.

- The program is not picking up messages fast enough.

♦ If the PDM cannot send any more messages to the named pipe, it will
keep a count of the number of messages that it was unable to send.
On the next successful send, it will output the following message:

 MESSAGES LOST = nnnn.

If the input file parameter MRELAY is Y (that causes all console
messages from the PDM to go to a named pipe), and the logical name
CSI_PDMID points to TESTPDM, and the PDM is systemwide, then the
named pipe will be TESTPDM_000000. Alternatively, if the PDM is
running in the group 145 with the logical name CSI_PDMID pointing to
QADBD, the named pipe will be QADBD_000145.

See “Initiating the SUPRA Server Physical Data Manager” on page 81
for a full description of the PDM input file parameters.

Chapter 5 Communicating with the SUPRA Server PDM

154 P25-0132-46

Example named-pipe-reading program. The following is a skeleton
message reading program in pseudocode. You should start your reading
program before the SUPRA Server PDM (csidatbas and/or csipdm) starts
sending messages and fills up the pipe. See “Example mailbox read
program” on page 263 for an example of a mailbox read program written
in C programming language.
Program Pipe_read

Begin code

 Construct pipe name using the translated value of CSI_PDMID
and its group number (000000 if System wide)

 Create the pipe

 While (ok to continue)

 begin-while

 read from pipe

 do action on message received

 decide if ok to continue

 End-while

End code

Writing your own interface to SUPRA Server PDM

System Administration Guide 155

Restricting usage of PDM commands using the csioauth
program

SUPRA Server allows you to create authorization files containing subsets
of PDM commands that you can then associate with one or more PDM
users. You include the PDM commands in the authorization file by
running the user authorization program csioauth and replying to the
prompts. Then you define the logical name CSIOPCOM_AUTH to point
to this file.

By default, users with root privileges have access to all PDM operator
commands through csiopcom, if there is no logical definition for
CSIOPCOM_AUTH. Users without root privileges can access only the
DISPLAY operator command unless they have a user authorization file
that gives access to other PDM commands.

Create a user authorization file and make it available to a specified user
or group of users in two stages:

1. Run csioauth and reply to the prompts to create an authorization file.

2. Define the logical name CSIOPCOM_AUTH pointing to the
authorization file you created. If you define CSIOPCOM_AUTH at
group level, all users in the same group have access to the same
PDM commands. Alternatively, if you define CSIOPCOM_AUTH at
process-level, users in the same group can access different PDM
commands.

A process-level logical definition takes precedence over a group-level
definition.

To run the authorization file creation program csioauth, you need to have
DBAPRV privileges. The following sequence of screens illustrates how to
create an authorization file. Run the authorization program by entering
the following command:

csioauth

Chapter 5 Communicating with the SUPRA Server PDM

156 P25-0132-46

This displays the authorization screen for the first PDM command,
DISPLAY, as follows:

SUPRA PDM Operator Command Authorization Program n.n

Permit SUPRA PDM Command <DISPLAY > (Y/N/<CTRL>/D) :

 (c) Cincom Systems, Inc. 1992
 Use of this software is governed by a license
 agreement. This software contains confidential
 and proprietary information of Cincom Systems,
 Inc. which is protected by copyright, trade
 secret, and trademark law.

Valid responses include:

♦ Y to allow a PDM command

♦ N to deny a PDM command

♦ CTRL-D to skip to the prompt for the authorization file name, or if the
authorization file name prompt is displayed, to abandon the selection

CTRL-D causes csioauth to deny all subsequent PDM commands. Thus, if
you press CTRL-D after having permitted the first two PDM commands, all
other PDM commands will be denied. If you press CTRL-D at the first
prompt (authorization for the DISPLAY command), the authorization file
will allow only the DISPLAY command.

Restricting usage of PDM commands using the csioauth program

System Administration Guide 157

As you reply to the “Permit SUPRA PDM Command” prompt, including
and excluding PDM commands from the authorization file, the results are
displayed on the screen as follows:

SUPRA PDM Operator Command Authorization Program n.n

 Permit SUPRA PDM Command <PRINT > (Y/N/<CTRL>/D)

 ____Commands permitted_____ _____Commands denied_______
DISPLAY		SHUTDOWN
UNLOAD		READONLY
		UPDATE
		DISABLE
		ENABLE
		DUMPSLF
 ___________________________ ___________________________

The above screen shows a partially completed authorization session. It is
prompting the user to define the authorization for the PRINT command,
listing the PDM commands permitted or denied so far.

Chapter 5 Communicating with the SUPRA Server PDM

158 P25-0132-46

Once you have permitted or denied the last SUPRA PDM command,
csioauth prompts you to enter the file specification for the authorization
file as follows:

SUPRA PDM Operator Command Authorization Program n.n

 Enter File Specification for Authorization data:

 ____Commands permitted_____ _____Commands denied_______
DISPLAY		SHUTDOWN
UNLOAD		READONLY
DISABLE		UPDATE
		ENABLE
		DUMPSLF
		PRINT
		ACTIVATE
		DEACTIVATE
		POPULATE
 ___________________________ ___________________________

Once you have successfully created an authorization file, define the
process-level logical name CSIOPCOM_AUTH to point to it as follows:
csideflog CSIOPCOM_AUTH /home/user/mike/opcom.auth

Restricting usage of PDM commands using the csioauth program

System Administration Guide 159

Communicating with the PDM using the csireply command
The csireply command is used to nominate operator terminals and to
reply to requests sent to operator terminals. To use this command, the
user must have the REPLY privilege. See “Maintaining user privileges
(csichkpriv)” on page 56 for procedures to define user privileges. Also
see “Enabling communication between processes and nominated
operators (csioper)” on page 65 for information about communications
between processes and nominated operators.

Messages sent to operator terminals are time-stamped, and they also
contain the process ID of the process sending the message. The
operator for which it was intended is also sent to cater for terminals that
have been assigned to multiple operators; for example:
%%%%%% Wed Jul 1 15:15:29 1992 %%%%%%

Message for OPER3 from process 1234

CSI001I alecs, GROUP wide SUPRA PDM release 1.0

active on node mickey

Messages are only sent to the operator terminal once.

Chapter 5 Communicating with the SUPRA Server PDM

160 P25-0132-46

Setting up the csireply command
Take the following steps to use the csireply command:

1. Set the PDM input parameter SYSOPCOM equal to Y, the default. At
regular intervals, the PDM will display the message “CSI0006O
Reply with a SUPRA PDM command” at enabled PDM operator
terminals.

2. Set the PDM input parameter OPERATOR equal to OPERn, where n
is the number of the operator you wish to be the PDM operator. This
should be a number in the range 1–12, with 1 being the default value.

3. Enable one or more operator terminals using the csireply command
(see “Using the csireply command” on page 163); for example:

 $ csireply -e oper3

The PDM sends all messages that do not have a severity level of L (log
file only) to the nominated operator console unless stated otherwise by
the CONSOLE PDM input parameter. You can specify only one operator
per PDM, but you can enable as many operator terminals per PDM as
you wish.

It may be advisable to have at least one terminal on your site dedicated
for use as a PDM operator terminal. This terminal can be used to enable
constant monitoring of one or more PDMs and allow corrective action to
be taken immediately. Using this procedure prevents the need to log into
different accounts to issue commands to different PDMs.

Requests sent to operator terminals are similar to messages in that they
are time-stamped and contain the process ID of the sending process.
Each request is also given a unique identifier that also forms part of the
request sent to the operator terminal(s); for example:
%%%%%% Wed Jul 8 12:32:29 1992

Request 123 for process 1234

CSI0006O Reply with a SUPRAPDM command

Communicating with the PDM using the csireply command

System Administration Guide 161

Unlike messages, the text of a request is repeatedly sent to the operator
terminal(s) until the message is acknowledged. The interval between the
request being sent is controlled through the logical name
CSI_REPLYTIMER. This interval is specified in the number of minute
intervals. All requests are sent simultaneously at this interval, regardless
of where in the interval they are initiated. Response to a request is given
through the csireply command specifying the request for which it is
intended.

If a terminal has been enabled for multiple operators, or if two PDMs
share the same operator, you will receive messages and prompts for all
these PDMs. In this instance, you will have to take extra care not to
accidentally send a command to the wrong PDM.

The database access module (csidatbas.o) also outputs messages to an
operator terminal. The operator to whom these messages are sent is
determined through the logical name CSI_CONSOLE, which should
evaluate the operator to be used; for example:
csideflog -g CSI_CONSOLE OPER1

If the logical name is not defined, messages are not sent to an operator
terminal.

The PDM issues prompts at operator terminals at regular intervals. The
message displayed will appear as follows:
%%%%%% Wed Jul 8 12:56:27 1992 %%%%%%

Request 123 for process 4321

CSI0006O ALECS, Reply with a SUPRAPDM command

Reply to this prompt using the csireply command (see “Using the csireply
command” on page 163); for example:
csireply -t 123 "display/databases"

The above example will display all databases loaded in the PDM ALECS.

Chapter 5 Communicating with the SUPRA Server PDM

162 P25-0132-46

Using the csireply command
The format of the command is:

csireply

-e OPER

-d OPER

-s

-t [" "]

nn

nn

request message



















-e OPER

-d OPER

-s

-t [" "]

nn

nn

request message



















Description Required. Specifies terminal use, status or a response to a request to
disable.

Format OPERnn 1–12 or all

request Decimal number

"message" 1-n alphanumeric characters enclosed in quotes

Options -e OPERnn Specifies the operator to be enabled. When used, a list
of operators for the terminal is displayed.

-d OPERnn Specifies the operator to be disabled. When used, a list
of operators for the specified terminal is displayed. If the
operator to be disabled is not enabled for the terminal,
an error is displayed.

-s Displays the operator status of the current terminal. If no
operators are currently enabled for the terminal issuing
the command, a message indicating the condition is
displayed.

-t request Sends a reply to a request. The request is specified as a
decimal number.

“message” Optional message sent to an operator request.

Communicating with the PDM using the csireply command

System Administration Guide 163

Considerations

♦ When you use the -t request option, the request specified must be
valid; otherwise, an error message is displayed.

♦ If you use the operator option, all operators can be enabled or
disabled in one operation using the keyword ALL.

♦ When you use the message option, the message request is canceled
once it has been replied to.

Examples

♦ The following example enables operator 1 on the current terminal:
 csireply -e oper1

♦ The following example disables all operators on the current terminal:
 csireply -d all

♦ The following example displays operator status of the current
terminal:

 csireply -s

♦ The following example sends a message to shutdown PDM ALECS
and, therefore, terminates request number 123:

 csireply -t 123 "SHUTDOWN/FORCE ALECS"

Chapter 5 Communicating with the SUPRA Server PDM

164 P25-0132-46

6
Tuning your database

SUPRA Server is designed to provide optimum performance. If installed
and implemented correctly, it provides good response time and efficient
work throughput. If performance deteriorates (response time increases,
and batch jobs and application programs execute slowly), you need to
examine the way your system is running and look for ways to improve
performance.

This chapter contains suggestions to help you tune your SUPRA Server
system to improve overall performance. It is important to use the
methods given in this chapter as guidelines only, not rules. You will find
that some methods have more effect on performance than others; tuning
is often a question of trial and error.

Tuning can be broken down into the following general areas:

♦ System tuning

♦ Physical database tuning

♦ Logical database tuning

♦ Optimizing program design

This chapter discusses system tuning, physical and logical database
tuning, and efficient program design. See “Initiating the SUPRA Server
Physical Data Manager” on page 81 for detailed discussions of
parameters that you can use to tune your database.

System Administration Guide 165

System tuning
The following UNIX file system parameters affect the performance
characteristics of large data sets:

Parameter Description Recommended value

bsize Block size Equals the block size for all PDM data sets stored in the file
system. For example, suppose your database contains some
large data sets that have a 4096 block size (records per block *
logical record size rounded up to the nearest 512). Cincom
recommends that these data sets reside on a file system defined
with bsize = 4096.

fsize Fragment size Equals the bsize parameter.
nbpi Number of

bytes per
node

Equals a large number in order to reduce the size of the node
space reserved in the file system. In theory, this number could be
the size of the smallest file on the file system.

maxbpg Maximum
blocks per
cylinder group

One hundred percent of the size of the cylinder group as
determined by the dumpfs command described later. This setting
causes large files to fill a cylinder group before starting to allocate
space in the next cylinder, keeps the files more compact on the
disk, and reduces seek time. The default setting is 1/4 the size of
a cylinder group. This setting spreads large files out into multiple
cylinder groups, thus, increasing the seek time.

rotdelay Rotational
delay

Equals zero for most systems.

contiguous Makes the file
system
contiguous

The contiguous parameter is an option when creating a file
system in the Logical Volume System (LVS). This parameter will
help keep the blocks of large files as close together as possible
on the disk.

You must set the bsize, fsize, nbpi, and contiguous parameters when the
file system is created.

The maxbpg and rotdelay are tunable parameters that you can modify
after the file system is created. Use the following command:
tunefs -d rotdelay -e maxbpg filesystem

Unmount the file system before executing the tunefs command. You can
determine the cylinder group size and all other file system parameters
using the following command:
dumpfs filesystem | more

Chapter 6 Tuning your database

166 P25-0132-46

Tuning your physical database
The first step in designing an efficient database is to normalize your
organization’s data. Data normalization involves reducing the transactions
and data flow pathways to their simplest form. You can then use this
framework as the basis for the physical database design. The SUPRA
Server PDM Database Administration Guide (UNIX & VMS), P25-2260,
explains how to normalize your data.

Accessing files on a network
If you are using NFS mounted file systems, it is possible to have
database files residing on machines remote from the one on which the
PDM is running. Data integrity cannot be guaranteed because no method
can assure that on return from an I/O request, data has been physically
written to disk.

Optimizing primary record retrieval
The PDM uses a hashed addressing technique, based on the value of
the record key, to calculate a home address on the disk for each primary
record. The record key is randomized to give a relative record number
(RRN) or home address. In some cases, two or more record keys
randomize to the same RRN. These records are known as “synonyms.”
When synonyms occur, SUPRA Server places the first record in the
home address and chains all subsequent synonyms together as shown
below:

A B C

A, B, and C are primary records whose record keys have all randomized
to the same RRN. To retrieve record C (the last record in the chain), the
PDM calculates the home address, retrieves A, finds that the record keys
do not match, follows the chain to B, finds that the records keys still do
not match, and then follows the chain to retrieve C.

Tuning your physical database

System Administration Guide 167

The PDM attempts to place all synonyms in the same physical block so
programs can retrieve any record in the chain with only one physical I/O.
The physical block in which a record ought to be found is known as the
home block for that record. If there is not enough room in the home block
for the synonym, the PDM places it in another block. Each block that the
PDM has to search to retrieve a given record entails an extra physical
I/O. The worst case, using the above example, would be if each synonym
were in a different block. Three physical I/Os would then be necessary to
retrieve record C.

To optimize system performance, you should try to minimize the number
of out-of-block synonyms. Because synonyms are bound to occur, you
need to leave a certain percentage of file space free so most records can
be placed in the home block. The following figure shows the out-of-block
synonym rates measured at various packing densities and blocking
factors.

Out-of-Block Synonyms vs. File Density

0 10 20 30 40 50 60 70 80 90 100
0

40

5

10

15

20

30

25

35

5 blocks

10 blocks
20 blocks
40 blocks

Out-of-Block
Synonym
Rate (%)

File Density (%full)

1 block

♦ File density. The number of records in use as a percentage of file
capacity; also known as the packing density

♦ Blocksize. The number of records per block

Chapter 6 Tuning your database

168 P25-0132-46

You can substantially reduce the out-of-block synonym rate by lowering
file density and increasing block size. As a general rule, a file density of
80% provides an acceptable level of out-of-block synonyms. The ideal
block size depends upon your type of application and the space you have
available. However, it is possible to increase block size to such an extent
that it takes too long to read a list. Therefore, you must balance the
benefits of reducing out-of-block synonyms against the data transfer time.
A large data transfer time may give your task improved performance;
however, it will degrade system efficiency. Refer to the SUPRA Server
PDM Database Administration Guide (UNIX & VMS), P25-2260, for
information about setting the blocksize.

Avoiding fragmented files
It is important to keep disk files contiguous. The SUPRA FORMAT
function attempts to create contiguous files; however, if this is not
possible, FORMAT will create fragmented files and warn you if the file is
in more than three fragments. You may also create fragmented files
using the unload/reload utilities, in this case, no warning is displayed.

Fragmented files cause a deterioration in performance. To eliminate
fragmentation on a SUPRA Server file system disk partition, follow these
steps:

1. Disable all databases that use the SUPRA Server file system disk
partition.

2. Use a standard UNIX utility, for example, tar, to back up the SUPRA
Server file system disk partition.

3. Use csicp to copy all the files from the SUPRA Server file system
disk partition to a standard UNIX directory.

4. Use a standard UNIX utility, for example, tar, to back up the files
created in Step 3.

5. Reinitialize the SUPRA Server file system disk partition using
csimkfs.

6. Use csicp to copy all the files created in Step 3 to the SUPRA Server
file system disk partition.

7. Enable all databases that were disabled in Step 1.

Tuning your physical database

System Administration Guide 169

Avoiding fragmented chains
The record chains of related data sets that are often updated may also
become fragmented. Ideally, all the records for any given chain should
start in the same control interval. To avoid the deterioration in
performance caused by fragmented chains, run Fast utilities on volatile
related data sets regularly. This will bring fragmented chains back into the
same control interval. Refer to the SUPRA Server PDM Utilities
Reference Manual (UNIX & VMS), P25-6220, for procedures on using
Fast utilities.

Using primary data sets
You should retain primary data sets for key access only. Nonkey data can
be moved from primary data sets to related data sets containing record
codes. (See “Using coded records” on page 174 for a description of the
advantages of using record codes.) This reduces the size of primary
records, allowing more records-per-block and fewer out-of-block
synonyms. Primary data sets containing transaction data can be
converted to related data sets. For instance, if a primary data set
contains a large amount of optional comment data, you can place this
comment data in an associated related data set.

Another important consideration for primary data set usage is the amount
of wasted space in each block. For example, if records are 260 bytes
long and blocks are 512 bytes long, each block holds one record plus 252
bytes of wasted space. You can avoid this wasted space by reducing the
size of each record by 4 bytes, if possible, or by increasing the block size
so that a smaller proportion of the file is wasted. This is a major
consideration when you use very large files.

Chapter 6 Tuning your database

170 P25-0132-46

Using related data sets
The PDM stores related records in linked lists. Each related record may
be associated with one or more primary records. The objective of
blocking related data sets is to maintain a linked list of average length
within one block. This means only one physical I/O is needed to perform
successive actions on that list. You specify the block size in the
LOGICAL-RECORDS-PER-BLOCK field when you define the file
specifications for related data sets. Refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260, for more
information on specifying block size.

To calculate the optimum block size for your application, establish the
average length of a list of related records connected by a primary
linkpath. You may need to return to the file specification screen several
times to alter and test the effect of different block sizes. The values you
enter for control interval and load limit also affect whether or not a list of
records overflows onto another block. The following sections discuss
these considerations in more detail.

Defining the control interval and load limit
You define values for control interval and load limit at the file specification
screen in DBA. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for information on the
DBA specification screen. The control interval specifies the number of
related records whose allocation the PDM controls as a single unit. The
load limit specifies the load capacity for the control interval as a
percentage.

Tuning your physical database

System Administration Guide 171

The control interval and load limit values affect the addition of records to
a related data set in the following ways:

♦ If an application program adds a record to an existing list of related
records, the PDM places that record in a control interval that contains
other records in the same list, if there is any space.

♦ If the record is the first record of a new list of related records, or
belongs to a list in a full control interval, the PDM puts it in a control
interval that is below its load limit, if there is one.

♦ A control interval that is above its load limit accepts records only in
lists that have already started in that control interval. When all control
intervals are above their load limit, new lists may start in one of these
control intervals, and subsequent SINOFs return the LOAD status.

♦ If you set the LOAD-LIMIT to zero, the first record of a new list is
located in the next higher control interval from the last new chain
started. This allocation process continues, starting from the first
control interval to the last, and then starting over from the first.

Sometimes a new list starts in a block in that other lists have already
started, because the block is in a control interval that is below its load
limit. This could cause parts of each list to overflow into different blocks
or control intervals if many other additions are performed. One technique
that avoids this situation when loading a related data set is to force each
new list to start in a new control interval by setting a low load limit. You
can later use the DBA RESET function to increase the load limit after
determining the average length of your lists. Refer to the SUPRA Server
PDM Database Administration Guide (UNIX & VMS), P25-2260, for a
description of how to use the RESET function.

The second method of keeping lists from overflowing into different blocks
is to set the load limit to zero. Doing so causes all control intervals in the
data set to be evenly distributed. Each new list starts in a new control
interval until the last control interval is used. Then, it starts over with the
first control interval. This allocation process continues until the data set is
full. If there is space, records added to existing lists go in a control
interval that contains other records of the same list.

Chapter 6 Tuning your database

172 P25-0132-46

Establishing the primary linkpath
A related record can be a member of as many relationships or linkpath
chains as needed. However, because only one occurrence of the record
exists for all the relationships, it cannot be placed in an optimum physical
location for each linkpath of which it is a member. It is important to
identify the primary linkpath for each related data set and ensure that as
many programs as possible use it when adding data. To determine the
primary linkpath, you need the following information:

♦ The average length of each chain

♦ The frequency of access along each chain

In theory, the primary linkpath should be either the longest chain or the
one most frequently accessed. In practice, the primary linkpath is usually
a compromise between the two.

To ensure that programs use the primary linkpath, specify the primary
linkpath to the PDM through the linkpath parameter.

Tuning your physical database

System Administration Guide 173

Using coded records
Processing long lists of related records is time consuming. You can
alleviate this problem by using coded records with a header-and-detail
structure. For example, in the following figure, the lines on either side of
the related records represent different linkpaths. You can scan down the
HD records until you are close to the required record. You can then
change linkpaths and scan serially through the DT records.

Related Records

HD

DT

DT

DT

HD

Primary
Record

DT

DT

DT

HD

It is more efficient to use code-directed reads than to read all the records
on the linkpath until you find a record with the required code.

Evaluating redundant data items
Redundant data items are data items that appear in more than one data
set. Redundant data items improve the speed of data retrieval. However,
they also increase the processing time needed to update information and
can cause database inconsistencies. Before you define redundant data
items, consider the trade-off between speed of retrieval and speed of
update.

Chapter 6 Tuning your database

174 P25-0132-46

Managing record holding
Record holding is a facility within the PDM that protects records from
being updated by two tasks at the same time. A task must reserve (hold)
records before it can update them. Because only one task at a time can
hold a record, record holding controls contention among tasks accessing
the same record. The DML commands that hold records while they
execute are: ADD-M, ADDVA, ADDVB, ADDVC, ADDVR, CNTRL,
DEL-M, DELVD, RDNXT, READD, READM, READR, and READV.
Records may be held differently depending on the processes being
performed.

Because more than one task may be accessing the same file in a
multitask environment, concurrent updating of a record by two or more
tasks could occur, and this could destroy database integrity. To prevent
this, the PDM holds any records to be updated by a task. Single-task also
performs record holding when the SINON mode is UPDATE.

The PDM holds the record until the record is no longer required (function
completion, COMIT processing, and RESET). The DML commands do
two types of record holding (numbers 1 and 2 below); the PDM does one
type of record holding (number 3 below):

1. Implicit record holding. The PDM temporarily holds records to
prevent interference between DML commands. The PDM temporarily
holds additional records that might be needed for completing a DML
function (a primary record on ADDVC). The following commands
perform automatic record holding: ADD-M, ADDVA, ADDVB,
ADDVC, ADDVR, DEL-M, and DELVD. The PDM holds internally all
the records affected by the ADD or DELETE (synonym chain of
primary records), not only the record to be added or deleted. The
ADD or DELETE may change the linkpaths in the affected records.
The system determines which records could be affected and holds all
of the affected records for the duration of the DML command.

 Automatic record holding is in operation in both task logging and
nontask logging environments. If task logging is active and the held
record(s) was updated, the automatically held record(s) become
uncommitted held record(s) (see number 3) after the DML function
completes. Otherwise, these records are released for use by other
tasks when the DML completes.

Tuning your physical database

System Administration Guide 175

2. Explicit record holding. An explicit hold is required if you want to
update a record or if you want to prevent someone else from
updating a record. Explicit record holding is accomplished with read
commands having END. in the last parameter instead of RLSE. The
read commands are: RDNXT, READD, READM, READR, and
READV. You can explicitly hold only one record per file per task if the
value for the PDM input parameter MULTIHOLD = N. If MULTIHOLD
= Y, you may hold as many records as can be retained in the holding
table. Your next DML command to that file can then update this
record(s).

 You can explicitly hold records in both task logging and nontask
logging environments. The only time explicit record holding is not
performed is in a multitask environment without task logging when a
file is opened for READONLY access and the reads use END. in the
last parameter.

 If task logging is not active, a task requesting a record already
explicitly held by another task is not placed into a wait state, but
immediately receives a HELD status.

 The PDM releases an explicit hold on a record if you:

- Issue another read command to the same file with END. in the
last parameter.

- Issue a FREEX command for the file.

- Issue a COMIT or RESET command for the logical unit of work.

- Issue a WRITE command for the record (WRITM, WRITV, and
ADDVR). If task logging is active and the task updates the
record, the explicitly held record becomes an uncommitted held
record (see number 3).

Chapter 6 Tuning your database

176 P25-0132-46

3. Uncommitted record holding. If task logging is active, records
previously held, either explicitly or implicitly, become uncommitted
records after an update to the record completes successfully.
Uncommitted record holding by the PDM prevents interference
between transactions that could jeopardize database integrity. Once
a task updates a record, it and any associated held records cannot
be updated by any other task until the updating task has
COMMITTED or RESET.

 Uncommitted record holding is not performed by specific DML
commands. The PDM provides uncommitted record holding to allow
updates to be backed out or committed. Therefore, these records
remain uncommitted (and held) until you issue your next COMIT or
RESET command. At that time, the records are released and
become available for use by other tasks.

 In some cases, two logical units of work may request the same
database records simultaneously. For example, Transaction A holds
Record x and starts processing. Meanwhile, Transaction B holds
Record y and starts processing. At some point, Transaction A tries to
hold Record y. Since y is already held by B, Transaction A receives a
HELD status. During Transaction B’s processing, it tries to hold
Record x, that is held by A. Therefore, if B waits, neither A nor B will
ever complete since they are waiting for each other.

 This situation is called a “deadlock,” “deadly embrace,” or “fatal
embrace.” The PDM prevents it by returning a HELD status to
Transactions A and B, indicating that a record could not be reserved
for either task because of a deadlock situation.

 Any task receiving a HELD status should issue a RESET and then
retry its processing from the most recent commit point. This RESET
command resolves the deadlock by releasing all held resources for
the logical unit of work. Contention between logical units of work can
cause poor performance. Therefore, we recommend that you design
your logical units of work so that different logical units of work in
different tasks do not require the same database records.

Tuning your physical database

System Administration Guide 177

Recommendations for managing record holding
Cincom recommends the following actions regarding record holding:

♦ If a process requires exclusive use of your database, you can use the
SINGLE mode which bypasses all record-holding logic and disables
task level recovery, and thereby improves performance. Recovery
from a failure while running in SINGLE SINON mode requires a full
database restore. The SINGLE SINON mode is supported by both
single-task and multitask SUPRA PDM.

♦ If you run your database in a multitask environment, the number of
records a task may hold is dictated by the size of the holding tables,
which in turn is defined by the DBA through the Database Details
screen.

♦ Monitor the size of the holding tables through the Database Details
screen. As the number of held records increases, the time taken to
search the holding table increases. Note that the holding table is a
pool of entries for all users. Thus, if you define 10 users of the
database with 100 held records each, one user holding 1000 records
could use the entire holding table. Remember that for every related
key you delete, update or insert, you could hold more than one
record.

Chapter 6 Tuning your database

178 P25-0132-46

Defining logical units of work
SUPRA Server is designed to process logical units of work (transactions).
A logical unit of work is a group of database requests that must all be
completed together or not at all. A task may consist of one or several
logical units of work. For example, a logical unit of work could be entering
a purchase order to the system, posting an invoice, or adding a new
customer.

In a task logging environment, you define the length of a logical unit of
work by issuing COMIT commands. The size of a logical unit of work is
from commit point to commit point. The length of a logical unit of work
determines how far back (in processing) you need to go to restart after an
error. Again, depending on whether task logging is active, you might have
to go back to the beginning of your program or just a few steps to the
most recent COMIT. In a task logging environment, all updates and
relevant information are written to a task log file on a task and a logical-
unit-of-work basis. For more information on task logging and the task log
file, refer to the SUPRA Server PDM Database Administration Guide
(UNIX & VMS), P25-2260.

The following example illustrates a sample program structure that could
be used to implement a logical unit of work:
INITIALIZATION (SINON)

While not finished, do:

 screen input and validation

 Database Update Processing (VMS DML commands)

 If error, then RESET

 else COMIT

end

TERMINATION (SINOF)

The initialization (SINON) process identifies the new task to the PDM and
allocates a unique internal task identifier. Once you have signed on, you
can begin processing.

You can process the database using the Physical View DML. Your
program can perform read-only database calls or can update database
records. If your program updates database records, the records are held
until committed, and they cannot be accessed by other programs during
that time.

Tuning your physical database

System Administration Guide 179

If an error is detected while updating, you can remove the updates to the
records by issuing a RESET. If no errors are detected, issue a COMIT to
free any held records. Updates to the records are now permanent; they
can no longer be removed by issuing a RESET. Errors in a logical unit of
work are handled differently based on where the error was detected:

♦ Error detected by the program. Because the logical unit of work is
incomplete when the error is detected, all the processing done before
the error must be undone by issuing a RESET. Your program can
either start a new logical unit of work or sign off, depending on the
severity of the error.

♦ Error not detected by the program. If you code your program to
execute COMITs at appropriate times, the PDM can assure the
integrity of your database. The PDM ensures that each logical unit of
work is always complete. If the PDM finds that a program has
terminated abnormally (batch and online) before signing off, the PDM
resets to the most recent commit point and signs off the task.

Chapter 6 Tuning your database

180 P25-0132-46

Managing buffers
Buffer organization and buffer use at run time affect performance. There
is a trade-off between memory and disk I/O performance. As your buffers
become larger and more numerous, they occupy more memory, but your
disk I/Os become fewer and larger. As you reduce the number and size
of your buffers, you increase the memory available at the cost of disk I/O
performance. However, because commercial applications more often
suffer from being I/O-bound than memory-bound, you should aim to
improve disk I/O.

Consider the following when deciding on your buffer strategy:

♦ You can allocate a pool of buffers defining the areas used for input
from and output to primary and related data sets. The number of
buffers in the buffer pool depends on how you use your database.
For example, a multiuser database needs a larger pool of buffers
than a single-user database.

♦ The PDM flushes the buffer contents to disk whenever a task
performs a COMMIT or a SIGNOFF. The PDM also writes the buffer
contents to disk when a task needs a block that is not in memory and
no unused buffers exist. A RESET also causes buffer flushes.

♦ When a task issuing a commit opens data sets for updating, it also
updates the corresponding buffers. After updating, the PDM writes all
buffers to the task log and the system log before the block is written
to the data set.

♦ The size of a data set record helps determine buffer size. The PDM
calculates the size of a buffer automatically using the maximum block
size of the data set. For example, if a data set contains five 300-byte
records per block, its block size must be at least 1536 bytes.

♦ It is better to avoid sharing buffers across data sets although it can
be useful to share buffer pools among data sets with the same block
size.

♦ Related data sets are organized with all records on a chain as close
together as possible. A large value for records-per-block allows many
serial accesses without disk I/O. It is helpful to specify a fairly large
number of records-per-block to cut down the number of I/Os. The
number of I/Os is generally more significant from a performance
standpoint than the amount of data transferred in an I/O operation.

Tuning your physical database

System Administration Guide 181

♦ Another factor affecting the number of copies of buffers is
simultaneous use of the database by multiple tasks. If the only copy
of a buffer is in use (a function required a buffer that is executing),
then another task must wait until the buffer is free, perhaps severely
degrading performance. In a multitasking environment, you should
monitor buffer handling to avoid thrashing. Thrashing takes place
when excess I/O prevents useful work. You can change the number
of buffer copies (but not the number of records-per-block), alter the
way in which buffers are shared between data sets, recompile the
database, and monitor its performance.

♦ You can improve the initial load performance of large primary data
sets dramatically by changing the number of copies of the buffer
used by the data set to 1, and sorting the input file into ascending
RQLOC sequence. These changes make file I/O sequential. Also,
the load application should sign on to the database in SINGLE mode
and should be linked with the single-task PDM (csibatbas.o).

Chapter 6 Tuning your database

182 P25-0132-46

Improving database performance with buffers
Database performance tuning is a complex, ongoing activity dependent
on numerous criteria and requiring regular monitoring and adjustments.
There is no single setup that is optimal for all sites or even for the same
site at different times. However, one of the most important ingredients in
tuning any application’s performance is its use of memory buffers. Tuning
buffers use will allow you to maximize the benefits of PDM buffers. To
effectively tune buffer use, it is helpful to review how buffers are
searched.

Understanding buffer search algorithms
When data records are accessed from a SUPRA Server PDM database,
they are maintained in memory buffer pools. These buffer pools are
searched when an application task requests a record. The following
search algorithms are used:

♦ Serial Scan. The list of buffers is linearly searched from beginning to
end until the desired buffer is found. This method is used by the PDM
when there are fewer than 20 buffers in a buffer pool.

♦ Hashing. An internal algorithm determines (within 20 buffer
searches) the actual buffer location within the list of buffers. The
buffer can then be accessed directly. This method is used by PDM
when there are 20 buffers or more.

♦ RAM disk. A record’s RRN is used to directly locate the actual buffer
in memory. This method is activated in PDM when the DBA assigns a
private buffer to a single file with as many copies of buffers as logical
blocks in a file. (A private buffer is a buffer exclusively assigned to a
single database file.)

Tuning your physical database

System Administration Guide 183

The following table shows algorithm use under different conditions
(where n = the number of logical blocks in the file):

 Buffer search algorithms

Number of buffers Serial scan Hashing RAM disk
1 to 19 X
20 to n-1 X
> = n X

As illustrated in the preceding table, the number of buffers is a
determining factor in algorithm usage. Serial scanning is most efficient for
a small number of copies of each buffer. As the number of buffers
increases, performance can seriously degrade due to the CPU time
required for each buffer search. In extreme cases, a search could require
more time than a physical I/O, and thereby negate the advantage of
introducing a large number of buffers.

As with any buffering product, PDM requires the memory buffers to be
populated with data before they can be effective. The PDM fills a buffer
when the data is first accessed from disk; buffers are not preloaded.
Thus, there is no performance benefit for the first access to a SUPRA
logical block. For example, if buffers are provided to buffer an entire data
set in memory, and the data set is read with DATBAS RDNXT functions,
performance will be no better than if a small number of buffers had been
allocated. After the buffers have been loaded with data, subsequent
reads should be much faster.

Chapter 6 Tuning your database

184 P25-0132-46

Optimizing data-set buffering
To take full advantage of PDM buffers, you must allocate the proper
number of buffers to each data set. The proper number will vary by data
set depending on the physical size of the data set and its activity. It will
also vary by site depending on CPU speed, system load, and available
memory. Small data sets and/or data sets with low I/O rates require fewer
buffers. Larger data sets and/or data sets with high I/O rates require
more buffers.

Before you can optimize your data-set buffers, you must collect statistics
about your database activity, particularly the logical I/O (LIO) and physical
I/O (PIO) rates for each data set. A physical read is a read that requires
disk access, while a logical read without a physical read is a buffer hit (an
in-memory read that does not require disk access). LIOs are good for
performance; PIOs are bad for performance. Providing more buffers
increases the likelihood of an LIO over a PIO.

I/O statistics are written to the PDM log file when a file is closed (if the
PDM input parameter STATISTICS=Y). Statistics may also be gathered
online by using the pdmstats.sh utility (see “pdmstats.sh” on page 237).
However, before making your buffer allocation decisions, you must also
consider the issue of PDM process memory.

Tuning your physical database

System Administration Guide 185

Tuning PDM process memory
The more buffers you add in a dbmod, the more memory the PDM server
will use. However, increasing buffers improves performance. Your goal is
to balance performance and memory usage. Ideally, the PDM server
process should have enough real memory to result in a zero page-fault
rate (always finding the desired pages in memory).

Avoid trading a data set I/O for a virtual memory I/O. Even if the PDM
server process has enough virtual memory to operate, you must also
ensure that it has enough real memory to run at optimum efficiency. If the
real memory is too small, the operating system will spend too much time
page-faulting the PDM server process.

The memory that a particular dbmod is using can be determined after it is
loaded by using the csiopcom command DISPLAY/DATABASES.

If you increase buffers in a dbmod, the PDM server process will require
more shared memory to load the dbmod into memory. Insufficient shared
memory in the PDM server process will result in a CSTI140F operator
message, and an IDBM status will be returned to the application.

Chapter 6 Tuning your database

186 P25-0132-46

CONTROL: Manufacturing tuning considerations
In most shops, the MRP/MPS review processor (MPSMP070) is the
longest-running batch job of the nightly job steam. Established
CONTROL: customers have learned that a dbmod dedicated solely to
MP070 is crucial for reducing MP070 run time. This is still true today, but
the PDM buffer options can make MP070 run significantly faster. To
optimize MP070 performance, consider the following:

♦ Identify the subset of data sets used by MPSMP070. This may
include (but not be limited to): BATD, BATM, BILL, INVD, LOCM,
MSGS, OORD, ORDM, PART, PTDM, RQMT, SCAL, SCRM, SITD,
SITM, SRCG, TABM, and TABV.

♦ Ensure that the LOGICAL-RECORDS-PER-BLOCK for each data set
gives a SUPRA logical block size of 4096 bytes (possible exceptions
are SCAL, PLV1, and /or LOCM which may need to be 8192, and
should, therefore, not share a buffer pool with a 4096 data set).

♦ Identify the MP070 hot files that could use more buffer copies. This
may include (but not be limited to): PART, PTDM, RQMT, ORDM,
and OORD.

♦ Define more buffer copies for the batch environment to take
advantage of additional free memory, which is typically at night.

♦ Use the csidba utility to create a heavily buffered database module.

♦ Run batch jobs using brunsl to take advantage of the single-task
PDM (see “Single-task PDM” on page 117).

♦ Ensure that the read-ahead feature is active by defining the logical
name CSI_READAHEAD with a value of YES (see the table under
“Implementing logical names” on page 38).

♦ Turn off indexing at the start of the batch stream, and perform an
index populate at the end of the batch stream.

Tuning your physical database

System Administration Guide 187

Improving database performance with indices
You define indices during database definition by connecting them to a
data set. Each data set can have one or more indices. Each index can
contain one or more secondary keys, and each secondary key can be
connected to one or more data items.

Consider the following when defining an index:

♦ For best performance, you should define no more than four
secondary keys per index, and from one to four indices per data set.

♦ It is more efficient to group all the secondary keys for one data set in
one index, rather than create several indices each containing one
secondary key. However, if you want to be able to deactivate
selected secondary keys, define each secondary key in its own index.
When you deactivate an index, you implicitly deactivate all secondary
keys it contains.

♦ If performance is a problem, you can make a small improvement by
setting INDEX-READ-VERIFY=NO on the index attributes screen.
This turns off the automatic check for index corruption and is fairly
safe if used on an index you do not intend to deactivate. Frequent
deactivation increases the risk of index records becoming outdated
and no longer matching updated data records. If the index
subsequently becomes corrupted and you have specified INDEX-
READ-VERIFY=NO, results will be unpredictable.

You can obtain tremendous performance benefits from using indices
during read-only operations; however, indexing becomes an
overhead during maintenance operations such as INSERT,
UPDATE, or DELETE.

Chapter 6 Tuning your database

188 P25-0132-46

Using secondary keys to access data offers, the following advantages
over using primary keys and linkpaths:

♦ Fast online lookup of nonvolatile data. For example, customer
records can be keyed on customer number. However, you could
define an index on customer name and initials for more flexible
retrieval of customer records. The flexibility derives from the fact that
you can key into the customer record using name instead of number.
Also, because secondary keys support generic reads (a search
based on only part of the key), you can retrieve all records that match
the partial key that is supplied. The use of secondary keys on records
such as customer records, which seldom change once entered,
incurs minimal performance overhead.

♦ Periodic report generation based on secondary keys rather than
primary keys. For example, you may want to produce monthly
reports ordered by product number within product class. The primary
data set has product number as its primary key, and product class as
a data field. To generate your reports, you define an index with
secondary keys for product class and product number. You update
the index and activate it once a month using the POPULATE function
of the index utility. After you produce the report, you deactivate the
index for the rest of the month to avoid the performance overhead of
maintaining the index.

♦ Reduced overhead in maintaining a sequenced primary linkpath.
By defining a secondary key on a sequencing field and the foreign
key, the PDM no longer needs to maintain the chain of related
records in sequence. Instead, it can use the index to retrieve records
in order by inserting records at the bottom of the chain instead of
sequentially searching the chain for the logical position. This may
improve insert performance by avoiding the seat and reducing
physical I/O. For example, to retrieve all identical surnames in first
name order, place a secondary key on the sequencing field, which is
the first name.

Tuning your physical database

System Administration Guide 189

Designing application programs
Application program design can have a far-reaching effect on the
efficiency of the system. The following guidelines apply to all programs
that access the PDM.

Record holding
Record holding is a feature of the PDM that protects records from being
updated by two or more tasks at the same time. The maximum number
of records that can be held for a database is determined by the product
of MAX-HELD-RECORDS and MAX-UPDATE-TASKS.

When the PDM input parameter MULTIHOLD=N, a task can explicitly
read and hold only one record per file per logical unit of work. With each
subsequent request to explicitly read and hold a record, all previous
explicitly held records for the file are released for the task. With
MULTIHOLD=Y, only the latest record explicitly read will be held for the
task.

When the PDM input parameter MULTIHOLD=Y, a task can explicitly
read and hold as many records as the record holding table permits.

All records held by a task will be released at the next COMMIT, RESET,
or SIGNOFF.

Chapter 6 Tuning your database

190 P25-0132-46

Managing record holding
You can control the number of retries and the time between retries by
setting the PDM input parameters RETRY= and INTERVAL= (see “Using
a database prefix” on page 94). The PDM performs the number of retries
specified in RETRY=, waiting for the length of time specified in
INTERVAL= between retries before returning a HELD status to an
application task. If you encounter an excessive number of HELDs, you
can try increasing the number of retries and/or the interval between
retries. More retries use up CPU cycles causing performance
deterioration. A longer interval between retries reduces CPU cycles;
however, the record may be stolen by another task before the interval is
up. From the point of view of the system, it is better to increase the
interval and reduce the number of retries.

Excessive record holding can cause a significant drop in performance.
Some record holding is necessary to ensure data integrity. However,
when another task attempts to access a held record, it must reset and
retry until the record is released. These repeated application task retries
increase processing time and impair performance.

Designing application programs

System Administration Guide 191

There are three methods for minimizing record holding:

♦ Optimizing the use of DML commands. In a multitasking
environment, records that are held by another task are temporarily
unavailable. Because some records are accessed frequently by
many programs, ensure that each record is held as infrequently and
as briefly as possible. Do not hold a record until it is necessary to do
so, and COMIT as soon as possible after updating. To this end,
make sure that no program holds records while it waits for a
response from the user. This allows other programs to access those
records.

♦ Reducing the duration of record holding. Normally a program that
needs to update several records places an exclusive lock on each
record, collects the update information, updates each record, and
then releases the locks. If the performance of your system is
degraded by numerous processes trying to access the same records
concurrently, you can reorganize your application programs so they
gather all the information necessary to update the records first, and
set an exclusive record lock only when all the update information has
been collected. This reduces the amount of time each record is held
by a process and helps minimize record contention.

♦ Altering the order of record holding. Sometimes many tasks
compete to update a subset of data. You can reduce record
contention in such cases by modifying the order in which your
application programs issue requests for record locks. Ensure that
your programs first request locks on the records that are more likely
to be held by other tasks. Then, if another task already holds one of
these records, the RESET requires less processing time.

Chapter 6 Tuning your database

192 P25-0132-46

Recovering from a deadly embrace
A deadly embrace can arise when two tasks need to update the same
two records. To avoid a deadly embrace, specify a maximum number of
retries that can occur if a required record is unavailable. When the
program reaches this number of retries, reset the task to a known point in
the transaction, releasing the record or records that it holds. You can set
the maximum number of retries by setting the RETRY= parameter in the
PDM input parameter file (see “Initiating the SUPRA Server Physical
Data Manager” on page 81).

Optimizing the frequency of commits
Pay attention to the frequency of commits. Too many commits increase
physical I/O and impact performance. Infrequent commits create long
commit intervals, which lead to large record-holding tables that take time
to search. Held records are unavailable to other users until the next
COMIT, RESET, or SINOF function is performed.

Designing application programs

System Administration Guide 193

Understanding read-ahead buffering
Read-ahead buffering is a mechanism used by the database access
program (DATBAS) and PDM to improve performance of both sequential
and serial reads when no record holding is being done. When your
application executes a read function, RDNXT, READV, READR, or
READX with the end parameter set to RLSE, the record is read and
returned to your application without holding the record. It is also possible
to turn off record holding by using the SINGLE SINON mode as explained
in the SUPRA Server PDM Programming Guide (UNIX & VMS),
P25-0240.

Read-ahead buffering is controlled by two parameters,
READAHEAD_THRESHOLD1 and READAHEAD_THRESHOLD2.
These parameters are set in the CSIPDMINP file (see "Creating a PDM
input file" on page 96). These thresholds have default values of 10 and
100. This means that PDM will not begin to pre-read records until the
application has made 10 requests for records from the same file with the
same parameters. Once the first threshold has been reached and the
application continues to perform READ functions for the same file with
the same parameters, PDM will begin to fill the Readahead buffer with
logical I/Os for RDNXT, READV, and READR until
READAHEAD_THRESHOLD2 is reached. Once the second threshold is
reached, PDM will begin to do physical I/O to fill the buffers. These
parameters may be adjusted for specific applications and general
performance tuning.

When DATBAS, either single-task or multitask, gets a request for a read
function with no record holding, it requests the record from the PDM as
usual. If the application makes additional requests without changing the
file, the element list, the qualifier, the reference, or the end parameters,
DATBAS requests that PDM place as many records as possible into the
interprocess communication area. In the case of READX, DATBAS
requests that 10 records be returned if they fit into the interprocess
communication area.

Upon receiving the interprocess communication area from PDM,
DATBAS copies it to one of three read-ahead buffers created
automatically in the application’s local memory. There is a read-ahead
buffer for RDNXT, one for READV and READR, and another for READX.

When the application makes another request for the same file, the record
is extracted from the read-ahead buffer. No access to the PDM is
required. This continues until all of the records in the buffer are
exhausted or one of the parameters changes or a COMIT function is
executed.

Chapter 6 Tuning your database

194 P25-0132-46

Because there are three read-ahead buffers, it is possible to intermix
functions without losing the buffers. Your application could perform a mix
of RDNXT, READV or READR, and READX as well as any other read or
update functions and still retain all of the previously read records. Many
programs perform sequences of reads to find data they are looking for.

As an example your program might do a RDNXT through a primary data
set. For each primary record found, the program might perform a series
of READV functions to read a set of related records. Both the RDNXT
and READV functions in this example would be able to use the read-
ahead buffers. If the program does a READV from two different data
sets, alternating back and forth, no read-ahead buffering is possible for
the READV functions. The performance of the application could be
improved by accessing all of the records in one set, and then accessing
all of the records in the other set. This process best uses read-ahead
buffering.

Context position considerations
The position within a data set is retained by your application in the
qualifier parameter. Your position is never lost regardless of the read-
ahead buffering.

Application programming considerations
The application programmer does not have to specifically code for read-
ahead buffers. The behavior of the PDM is identical with or without read-
ahead buffering with the following exceptions:

♦ Because more records are being returned to the application
program’s process, there is a higher likelihood that the data read will
be updated by another task while the reading application has the
records in the read-ahead buffers. This could cause some
applications to behave slightly differently with read-ahead buffering
active. It may be more likely to get IVRP errors when reading with
READV and READR when read-ahead is active.

♦ When read-ahead buffering is active, the behavior of *FILL= can be
slightly modified. The values passed in the data area are not
necessarily the ones used to fill the data area of the returned records.
When DATBAS requests multiple records from PDM, the data area
containing the *FILL= values are passed to PDM and are used to fill
all of the records read. This works for most applications. However,
this will not work for applications that modify the *FILL= data on each
DATBAS call.

Designing application programs

System Administration Guide 195

Turning off read-ahead buffering
If your application fits either of the above patterns, you will have to turn off
the read-ahead feature. This can be done by defining the logical name
CSI_READAHEAD with the following UNIX command:
 csideflog -p CSI_READAHEAD NO

Turning on read-ahead buffering
To turn on the read-ahead feature, you may either remove the
CSI_READAHEAD logical name with the csidellog command (see
“Deleting logical names” on page 51) or change its value to YES with the
csideflog command (see “Defining logical names” on page 45).

Printing read-ahead buffer statistics
Additionally, the logical name CSI_READAHEAD_STATISTICS may be
set to the value of YES in order to produce read-ahead statistics. The
statistics are printed in the file to which the CSIDAPLOG logical name
points. If either the CSI_READAHEAD_STATISTICS or the CSIDAPLOG
logical name is not defined, no statistics will be printed.

The following message will be printed in the CSIDAPLOG file:

CSTI436I SINOF statistics (program name) (database) Total Calls Buffered
Calls
RDNXT (nnnn) (nnnn)
READV/READR (nnnn) (nnnn)
READX (nnnn) (nnnn)

The Total Calls column shows the total number of calls made by the
application for each function. The Buffered Calls column shows the
number of calls that were executed using the read-ahead buffers. These
functions were performed without accessing the PDM server.

The CSI_READAHEAD and CSI_READAHEAD_STATISTICS logical
names can be defined in any logical name table. They do not have to be
defined in the same table. By defining them in a process table, the values
assigned will apply only to the process. By defining them in a group table,
they will apply to all members of the group. By defining them to a system
table, they will apply to all users of the PDM system.

Chapter 6 Tuning your database

196 P25-0132-46

Remote application considerations
Read-ahead buffering is supported for remote applications linked with
DATBAS and using TCP/IP. The logical names CSI_READAHEAD,
CSI_READAHEAD_STATISTICS, and CSIDAPLOG must be defined on
the remote machine.

Performance tuning using the MAXDATA PDM input
parameter
Read-ahead buffering uses the data area defined by the MAXDATA PDM
input parameter to transfer records from PDM to DATBAS. The size of
this area and the size of the data requested in the element list parameter
limit the number of records that can be transferred in one request to the
PDM server. Performance is usually improved by reducing the number of
PDM server requests. By increasing the MAXDATA PDM input
parameter, more records can be transferred from PDM to DATBAS in
one PDM server request, reducing the number of PDM server requests
required to read a data set or set of records. This is especially important
if the amount of data being requested in your program is very large. The
minimum and default value for MAXDATA is 4096, the maximum is
32767 (see “Creating a PDM input file” on page 96).

Designing application programs

System Administration Guide 197

Controlling data item lists
It is preferable to minimize the length of the data item lists in your
application programs. Do not request data items that the program does
not process. Also, keep the sequence of the data item lists the same as
the physical sequence of the data items in the record wherever possible.
This speeds up processing and improves performance.

In addition, bind frequently accessed data items to increase efficiency.
The program searches the data item list only once—the first time it is
used. Data item binding is worthwhile whenever the same data item list is
used more than once, regardless of the number of data items. Refer to
the SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240,
for further information about data item binding.

Chapter 6 Tuning your database

198 P25-0132-46

7
Using the UNIX online Help facility

The csihelp program is the online Help program for SUPRA Server under
UNIX. It is a screen-based application that offers a multilevel Help
system. Specific topics (subjects) may have successive numbers of
subtopics, in which case the screen displays Help text in the form of an
outline.

The Help program runs in both interactive and noninteractive mode. In
interactive mode, you can move up and down through the Help text and
obtain help on topics relative to your position in the system. You can
move down through the Help text more than one level at a time by
specifying a topic and successive subtopics. You can move up through
the Help text one level at a time, and at each level the screen displays a
list of subtopics. In noninteractive mode, you specify a topic that you need
help with. The screen displays Help text for the topic you choose; then it
allows you to immediately exit the Help program.

In both modes, you can perform generic searches, that may result in
multiple matches, and you can turn on case sensitivity (the default is no
case sensitivity).

Each Help file must have an associated Help index file that is built
through the csimkhlp program. The Help index file has the same name
as the Help file but is suffixed by “.hix”. The program uses this index file
to provide rapid access to the Help text for a particular topic. See “Using
csimkhlp to create a Help file and Help index” on page 203 for details of
the csimkhlp program and the format of the Help file.

System Administration Guide 199

Three logical names are used by the csihelp utility and the SUPRA PDM
utilities that use the csihelp utility:

♦ CSIHELP is the full path and file name of the csihelp utility, which is
used by the SUPRA PDM utilities to locate the csihelp binary file. For
example:
csideflog -s CSIHELP /supra1/supra1_relx.x.x/bin/csihelp

♦ SUPRA_HELP is the full path to the subdirectory containing the
SUPRA PDM Help files. For example:
csideflog -s SUPRA_HELP /supra1/supra1_relx.x.x//help

♦ CSI_HELPFILE is the full path and file name of the Help file to be
used by csihelp, which is described in the following sections.
Example:
csideflog -s CSI_HELPFILE
/supra1/supra1_relx.x.x//help/csihelp.hlp

Entering the csihelp command
The format of the csihelp command is as follows:

csihelp [-h] [-i] [-s] [-t] [help-file-path] [topic-list]

-h

Description Optional. Specifies that the Help file to be used is to come from the
command line.

Considerations
♦ If you specify -h, you must specify a Help file.
♦ If omitted, the Help file comes from the logical CSI_HELPFILE.

-i

Description Optional. Specifies that the program is to run in noninteractive mode.
Considerations

♦ This option is useful if the csihelp program is to be called from within
a program.

♦ In noninteractive mode, the screen displays Help text for the topic
selected on the command line. After the display, you immediately exit
the program. In interactive mode, the screen prompts you to enter
more topics.

Chapter 7 Using the UNIX online Help facility

200 P25-0132-46

-s

Description Optional. Turns on case sensitivity within the Help program.

Consideration If omitted, the program is not case sensitive.

-t

Description Optional. Specifies that the program prints an outline of topics under the
specified topic.

Consideration The output is in the form of a nested topic list. For example:
TOPIC1
 TOPIC2
 TOPIC3
 TOPIC4
 TOPIC5
TOPIC6

[help-file-path]

Description Conditional. Required if you use -h. Specifies the path of the Help file to
be used.

Consideration You can specify the path as a logical name.

[topic-list]

Description Optional. Specifies the Help topic to be displayed.

Format The output is in the form of a nested topic list. For example:
 TOPIC1
 TOPIC2
 TOPIC3
 TOPIC4
 TOPIC5
 TOPIC6

Considerations

♦ If the topic is not at the top of the outline, you must specify all
parents. You can perform generic searches by specifying the first n
characters of a topic.

♦ If you do not use generic searching and interactive mode is on, you
will be positioned at the specified topic once the help for that topic
has been displayed. If you use generic searching and multiple
matches are found, you are positioned at your last point in the
outline.

Entering the csihelp command

System Administration Guide 201

Examples of the csihelp command

♦ The following example invokes interactive mode help with no case
sensitivity and uses the Help file that logical CSI_HELPFILE points
to. The screen displays an outline of Help topics.

 $ csihelp

♦ The following example invokes interactive mode help with no case
sensitivity using the file with the path: /users/mark/helpfil.hlp. The
screen displays an outline of Help topics.

 $ csihelp -h /users/mark/helpfil.hlp

♦ The following example invokes interactive mode help with no case
sensitivity, and positions the help outline at the topic FRED using the
Help file pointed to by the logical CSI_HELPFILE. The screen
displays help for the topic FRED, and displays a list of subtopics for
FRED.

 $ csihelp FRED

♦ The following example invokes noninteractive help with case
sensitivity using the Help file pointed to by the logical CSI_HELPFILE.
The screen displays Help for Mark, a subtopic of Steph, and control
will be returned to the shell prompt.

 $ csihelp -s -i Steph Mark

♦ The following example invokes interactive mode help with no case
sensitivity using the Help file pointed to by the logical CSI_HELPFILE.
The screen displays help for any topics beginning with JI, which are
subtopics of topics beginning with VA. If multiple matches are found,
then the position is placed at the root of the outline. Otherwise, the
position is placed at the only topic that met the search criterion.

 $ csihelp Va Ji

Chapter 7 Using the UNIX online Help facility

202 P25-0132-46

Using csimkhlp to create a Help file and Help index
The csihelp program uses an index file to provide rapid access to help on
a particular topic. The index file itself is generated by the csimkhlp
program. In order to generate an index, you must first create a Help file
that has a fixed layout. The format of these files is as follows:

level-no. topic-name

 help-text

level-no. topic-name

 help-text

level-no. topic-name

 help-text

level-no.

Description Required. Specifies the level of the particular topic. For instance, level 1
means that the topic is at the root of the help tree. Level 2 means that it is
a subtopic of the last level 1 topic.

Format 1–3 numeric characters per level number

Considerations

♦ The level numbers can only increment by one, but they can jump
back by any number. For example, the level numbers must form the
tree structure. For example:

 The sequence 1,2,3,3,4,3,1 would be valid.

 The sequence 1,2,4,3,3,3,1 would be invalid.

♦ The first digit of the level number must appear in the first column of
the Help file.

♦ You can have a maximum of 256 level numbers.

Using csimkhlp to create a Help file and Help index

System Administration Guide 203

topic-name

Description Required. Specifies the name of the Help topic.

Format 1–80 alphanumeric characters

Consideration The topic name must appear on the same line as the level number and
cannot span multiple lines (a line defined as a string of text separated by
a new line character).

help-text

Description Required. Identifies the text for the Help topic.

Format You can have a maximum of 1024 alphanumeric characters in an entire
Help entry. Therefore, the format for the Help text is 1 - (1024 - (level-no.
+ topic-name)). For example, if the level number is 3 characters and the
topic name is 50 characters, the format for the Help text is 1–971.

Consideration The text can span multiple lines but it must not fall in the first column of
any line because this is reserved for level numbers.

Once you create a Help file of this format, you can generate an index
using the csimkhlp program. You can specify the name of the Help file on
the command line, or the system will prompt you for the name when the
program is run. The program creates a file with the same name as the
original file but with ‘.hix’ appended.

Chapter 7 Using the UNIX online Help facility

204 P25-0132-46

8
Database migration

This chapter provides details on how to move a database description and
all data for that database. You can migrate any database that supports
TOTAL or TOTAL-compatible DML. You must have:

♦ Data Definition Language (DDL) files describing your database

♦ Sequential files containing your data

Before making any attempt to load DDL and/or any data into a database,
back up your SUPRA Directory database (SUPRAD). This includes
suprad.mod and all udd files, including logs for suprad. Make sure no one
is using the Directory when you create the backup copy.

Use these basic migration steps on your source system:

1. Generate DDL file from source database.

2. Generate a sequential file containing the data from each data set.

System Administration Guide 205

Use these basic migration steps on your target system:

1. Back up the source SUPRA Server Dictionary and all associated data
sets.

2. Load the DDL.

3. Validate and compile database description.

4. Format data sets.

5. Load data from the sequential files into the data sets.

You must write the application to copy the data in your source data sets
into the sequential files that will be loaded into the target database. You
may use an application development tool, such as MANTIS.

Chapter 8 Database migration

206 P25-0132-46

Migrating into SUPRA Server for UNIX
When migrating your database into SUPRA Server for UNIX, use the
documentation from the source system to generate the DDL input file.
You must generate sequential files of data, generating one from each of
your data sets. Move these files to the new operating environment and do
any required character set conversions before attempting the migration.

Application to
Create Sequential

File

User Files/
User Data sets

DDL File

Sequential
Files of Data

CINCOM PDM
DDL Generator

CINCOM DBMOD
or Directory
Database

DBMS or
PDM

SUPRA
Directory

DDL Load
Facility

SUPRA
PDM

SUPRA Compiled
Database

Description

DBA ADD
Utility

User
Data sets

Source Target

Migrating into SUPRA Server for UNIX

System Administration Guide 207

Migrating from SUPRA Server for UNIX
When migrating from SUPRA Server for UNIX, you must generate the
DDL file and the sequential files of data. See “Generating a DDL file” on
page 209 for details on generating the DDL file that will be used on the
target system.

You must copy the data from each data set in your SUPRA Server
database and put it into sequential files. These files will be used on the
target system to add records into the new database. Character set
conversion may be done either as you create the sequential files, or as
you move these files to the target system. Operating environment
restrictions may apply.

DBA Print
Utility DDL File

SUPRA
Directory

SUPRA Compiled
Database

Description

SUPRA
PDM

User
Data sets

Application to
Create Sequential

Files

Sequential
Files of Data To Target

To Target

Chapter 8 Database migration

208 P25-0132-46

Generating a DDL file
Before you can migrate your database to another operating environment
or release of SUPRA Server, you must first generate a copy of your
database definition in DDL format. To do this, you must set the logical
definition CSI_DBA_PRINT; then select the DBA Print function. The
logical name causes the DBA Print to generate a copy of the database
description in DDL format.

The steps to generate a DDL file are:

1. Create a backup copy of the SUPRA Directory database (SUPRAD)
and all associated files.

2. Define the logical CSI_DBA_PRINT to DDL as follows:
csideflog -g CSI_DBA_PRINT DDL

3. Sign on to DBA and select Function 7, Print, from the Database
Description Function menu to create a DDL file of the database you
specify.

If you submit the print run to batch, remember the logical name available
to the batch process. Defining the group logical name as shown above
makes the print run available to the batch process; however, any other
user in the same group that is printing a database description will also
generate a DDL file instead of the normal print listing file.

Warning: When you generate the DDL file successfully, if you are
migrating from VAX to SUPRA Server for UNIX, you must delete the
following parameters from the DDL file:

GLOBAL-SECTION=

CALLING-MECH=

CLUSTER-SUPPORT=

Generating a DDL file

System Administration Guide 209

Using the DDL Load Facility
The DDL Load Utility, csiddlload utility, loads a database description onto
the SUPRA Directory using an existing Data Definition Language (DDL)
file. Use the csiddload utility to load a database description from one
Directory to another. csiddlload is not intended to be a validation routine
and assumes the DDL is correct.

The SUPRA Directory allows no duplication of database and data set
names. If you are starting with a clean Directory, you will have no
problems. However, if you already have databases and data sets defined,
you must ensure that the name of the database and the names of the
data sets you are about to add do not already exist on the Directory.

Be especially careful if the csiddlload utility has already been run
unsuccessfully in update mode, as the Directory may have been partially
updated. Delete the database descriptions through DBA before trying
again, or restore the backup copy of the Directory, and use the restored
version. If you attempt to load a database under a name that already
exists on the Directory, SUPRA Server will respond with a message and
return to command level without completing the load.

The csiddlload utility generates a listing output file named ddlload.log
containing the DDL transactions and any errors (See “Checking
csiddlload error conditions” on page 219 for details on error messages.)
This file is created in your current default directory.

Chapter 8 Database migration

210 P25-0132-46

The following figure illustrates a data model of the physical Directory
structure. The csiddlload utility adds the entities, their attributes, and the
relationships according to this framework. Each box represents an entity
and each line represents a relationship.

Data Set Database
Description

Task
Log

Task
Log

System
LogBuffer

File
Specification

Record

Physical
Data Item

indicates a one-to-one relationship

indicates a one-to-many relationship

indicates a many-to-many relationship

Using the DDL Load Facility

System Administration Guide 211

Signing on to csiddlload
Initiate the csiddlload utility from the command level to display the initial
SUPRA Server sign-on screen:

 csiddlload
 CINCOM SYSTEMS SUPRA DATABASE ADMINISTRATION RELEASE 1.0 20-May-93 09:02

 *** **
 ******* ******
 ********** *********
 ************ ***********
 ************* ************
 ************** *************
 ************** *************
 Username :
 ************** **************
 ************** ************** Password :
 ************* *************
 ************ ************
 ********** **********
 ******* *******
 *** ***

 CINCOM SYSTEMS SUPRA DBA

The top line of the sign-on screen is a standard heading and is displayed
on every screen requiring data entry. The information includes CINCOM
SYSTEMS, the SUPRA Server title, the current date, and the time of
entry.

Enter your valid username/password combination as defined to SUPRA
Server. If unsuccessful after three attempts, the csiddlload utility
automatically signs off.

Chapter 8 Database migration

212 P25-0132-46

Loading the DDL file
After you have successfully signed on, you will be prompted to give the
full file specification for the DDL input file. Select CHECK ONLY mode or
UPDATE mode, and specify the name of the database.

 CINCOM SYSTEMS DDL LOAD FUNCTION 20-May-93 13:55

 File containing DDL or <return> to exit
 :testdb.ddl

 CHECK ONLY or UPDATE data directory (C or U) :
 (<PF4> will select U) : U

 Do you want to take options for each data set in turn? (Y/N)
 (<PF4> will select NO) : Y

 Change Name of database ? (<PF4> will select TESTDB)
 or <PF1> to exit :

File Containing DDL

Description Identifies the complete file specification of the DDL input file.

Format Up to 64 alphanumeric characters

Consideration If you enter the name of a file that does not exist or that cannot be
opened, an error is displayed and you are allowed three more attempts. If
these attempts fail, csiddlload terminates.

CHECK ONLY or UPDATE

Description Indicates whether you want to check or update the Directory.

Options C Performs a syntax check and does not update the Directory.

U Updates the SUPRA Directory with your data.

Using the DDL Load Facility

System Administration Guide 213

Options for Each Data Set

Description Indicates whether or not you want to use the DDL Load options screen.

Options Y Gives the DDL Load options screen for each data set specified in the
DDL file.

N Each data set is automatically added and not renamed.

Consideration You should answer Y if you already have data sets in your SUPRA
Directory that have the same name as the ones in your DDL file.

Change Name of database

Restriction Displayed only in update mode.

Description Specifies the new name of the database description as it will be stored in
the SUPRA Directory.

Format 6 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ To select the database name contained on the DDL file, press PF4.

♦ This parameter allows you to rename the database description before
it goes to the Directory.

♦ If the name you select already exists on the Directory, csiddlload
displays the message:
 (dbname) already exists on the directory <return>

 When you press RETURN, you exit to command level without
completing the load.

Chapter 8 Database migration

214 P25-0132-46

After you enter the DDL Load Function screen, if you replied Y to the
‘options’ questions, SUPRA Server returns the DDL Load Options screen.
Indicate what action you wish to take on the data set by entering the
applicable number in the Option field.

 CINCOM SYSTEMS DDLLOAD LOAD FUNCTION - DATA SETS 20-May-93 13:56

 Options for data set SET1

 1: Insert data set as it is
 2: Rename and add this data set
 3: Ignore this data set

 Option:

Using the DDL Load Facility

System Administration Guide 215

Enter Choice No.

Description You are prompted to specify the action for each data set.

Options
1. Load the data set.

2. Load the data set under a different name (useful if a data set with
that name already exists on the Directory).

3. Omit the data set from the load.

Considerations

♦ If you select option 2 and rename SET1 to SET2, as in the following
example, the SUPRA Directory data set will be called SET2. All its
records and data item names will be prefixed by SET2. The file
specification names will not be changed. If required, use DBA
functions to change them after the load is finished (refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260).

♦ If you select option 2 and rename a primary data set, check for
linkpaths to related data sets that reference the original name.
Change the linkpath references in the related data set using DBA
functions.

♦ If you select option 3 to ignore this data set, it has the same effect as
if all DDL for the data set had been removed from the input file. In the
prologue, you may have specified a buffer intended for this data set.
This buffer will be created on the SUPRA Directory, but it will not
belong to any data set.

Chapter 8 Database migration

216 P25-0132-46

Example The following example shows the screens displayed if you select option 2
for Enter Choice No.

 CINCOM SYSTEMS DDLLOAD LOAD FUNCTION 20-May-93 13:57

 New name for data set SET1 : SET2

Using the DDL Load Facility

System Administration Guide 217

There is a time interval between each menu while the data set, records,
data items, and file specifications are loaded onto the SUPRA Directory.
The system then displays a confirmation screen.

 CINCOM SYSTEMS DDLLOAD RUN SUMMARY 20-May-93 13:57

 ddlload.log created for your information
 Number of DDL errors : 0
 Database TESTDB now exists on the directory

 << Press any key to terminate DDLLOAD >>

The entities and relationships are added to the Directory as they are read.
Comments belonging to particular entities are added whether or not they
occur in one contiguous block in the DDL file.

Chapter 8 Database migration

218 P25-0132-46

Checking csiddlload error conditions
The csiddlload utility uses the DDL input file and generates a listing
output file. It is not a validation routine, and it will stop if an error is
encountered on either of these files.

Status codes. If a bad status occurs on either the input file or the listing
output file, the csiddlload utility displays a message indicating the name
of the file and the error status code from the operating system. If
csiddlload is attempting to open your DDL file, the error message is
displayed after three unsuccessful attempts.

SUPRA Server error messages. SUPRA Directory errors, internal
coding errors, and some I/O errors result in an error condition and the
system displays a SUPRA Server error message. For the corrective
action on any message you may receive, refer to the SUPRA Server
PDM Messages and Codes Reference Manual (PDM/RDM Support for
UNIX & VMS), P25-0022.

Listing output file messages. Error messages in the listing output file
indicate an error in the DDL, which does not normally occur. However,
warnings may be issued for DDL statements that are not valid for SUPRA
Server for UNIX.

Using the DDL Load Facility

System Administration Guide 219

Sample DDL input file
The DDL input file contains the statements used to describe the
database. The statements must be written in a fixed format. A sample file
is presented below. For details on the specific values required for each
statement, refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260. Statements in the DDL input file must
conform to the following rules:

♦ All statements must begin in column 1. A blank terminates an entry.
Anything following a blank is considered a comment. Thus, a
comment can appear on the same line as a DDL statement. A blank
in column 1 indicates a full comment line. Comments should be
associated with the preceding statement. In the following example,
the data item CUSTCTRL has two associated comments:
CUSTCTRL=6 CTRL field

 This is the key field

CUSTLKHD=8

♦ The INDEX= statement defines the fields that comprise the
secondary key. This statement must be in the following format:

INDEX=ffffppss=ffffdddd(x),.....,END.

 where: ffff = data set name

 pp = primary index name

 ss = secondary index name

 dddd = data item name

 (x) = data type

 Each INDEX= statement may contain up to five data items per line. If
the secondary key contains more than five data items, a continuation
line is required. A continuation line must contain a hyphen (-) in
column 1, followed by each data item (and its type), beginning in
column 16. For example:
INDEX=CUSTP1S1=CUSTCTRL(C),CUSTDAT1(C),CUSTDAT2(C),

- CUSTDAT4(C),CUSTDAT5(c),END.

Chapter 8 Database migration

220 P25-0132-46

♦ The primary index name must be in the format:

INDEX-NAME=ffffIXpp

 where: ffff = data set name

 IX = constant denoting primary index

 pp = 2-character primary index name

♦ The secondary key name must be in the format:

SECONDARY-KEY-NAME=ffffSKss

 where: ffff = data set name

 SK = constant denoting secondary key name

 ss = 2-character secondary key name

Sample DDL input file
BEGIN-DATA-BASE-GENERATION

DATA-BASE-NAME=ORDERS

 This is a sample database

BEGIN-OPTIONS

PASSWORD=CINCOM

MAXIMUM-HELD-RECORDS=16

MAXIMUM-TASKS=10

MAXIMUM-UPDATE-TASKS=10

SHADOW=N

SINGLE-TASK=N

BYTE-ORDER=N

DATABASE-TYPE=G

BINARY-ZERO-KEY=N

NETWORK-SUPPORT=Y

TASK-LOG=Y

TASK-LOG-IO=5

FUNCTION-LOG=D

END-OPTIONS

SHARE-IO

Using the DDL Load Facility

System Administration Guide 221

IOAREA=PRIB=5 Buffer for primary data sets

IOAREA=RELB=5 Buffer for related data sets

END-IO

BEGIN-PRIMARY-DATA-SET

DATA-SET-NAME=CUST

 This is the CUSTOMER primary data set

IOAREA=PRIB

PRIMARY-DATA

CUSTROOT=8 ROOT field

CUSTCTRL=6 CTRL field

 This is the key field

CUSTLKHD=8

 This is the link to the ITEM data set

CUSTDATA=4

INDEX=CUSTC1C2=CUSTDATA(C),END.

INDEX=CUSTC1K1=CUSTCTRL(C),END.

INDEX=CUSTC2K2=CUSTDATA(C),CUSTCTRL(C),END.

END-DATA

TOTAL-LOGICAL-RECORDS=20008

LOGICAL-RECORD-LENGTH=26

LOGICAL-RECORDS-PER-BLOCK=61

ACCESS-MODE=Y

FILE-SPEC=CUST.QAR/SECTORS=12

START-INDEX-PHYSICAL-SPECS

INDEX-NAME=CUSTIXC1 Primary index

 This is a primary index

INDEX-CORRUPT-ACTION=0

INDEX-NULL-SORTING=H

INDEX-READ-VERIFY=Y

INDEX-FILE-SPEC=INDEX_DIR:cust1.idx

START-SECONDARY-KEY

SECONDARY-KEY-NAME=CUSTSKC2 Secondary key

 This index contains the DATA item

SECONDARY-KEY-UNIQUE=N

SECONDARY-KEY-DIRECTION=F

SECONDARY-KEY-POINTER-ORDERING=N

SECONDARY-KEY-POINTER-TYPE=D

SECONDARY-KEY-DATA-TYPE-SORTING=N

SECONDARY-KEY-DUPLICATES=5

Chapter 8 Database migration

222 P25-0132-46

END-SECONDARY-KEY

START-SECONDARY-KEY

SECONDARY-KEY-NAME=CUSTSKK1 Secondary key

 This index contains the CTRL item

SECONDARY-KEY-UNIQUE=H

SECONDARY-KEY-DIRECTION=Y

SECONDARY-KEY-POINTER-ORDERING=O

SECONDARY-KEY-POINTER-TYPE=D

SECONDARY-KEY-DATA-TYPE-SORTING=N

SECONDARY-KEY-DUPLICATES=5

END-SECONDARY-KEY

INDEX-NAME=CUSTIXC2 Primary index

INDEX-CORRUPT-ACTION=O

INDEX-NULL-SORTING=H

INDEX-READ-VERIFY=Y

INDEX-FILE-SPEC=cust2.idx

START-SECONDARY-KEY

SECONDARY-KEY-NAME=CUSTSKK2 Secondary key

 This key contains the DATA and CTRL items

SECONDARY-KEY-UNIQUE=Y

SECONDARY-KEY-DIRECTION=F

SECONDARY-KEY-POINTER-ORDERING=N

SECONDARY-KEY-POINTER-TYPE=D

SECONDARY-KEY-DATA-TYPE-SORTING=N

SECONDARY-KEY-DUPLICATES=5

END-SECONDARY-KEY

END-INDEX-PHYSICAL-SPECS

END-PRIMARY-DATA-SET

BEGIN-RELATED-DATA-SET

DATA-SET-NAME=ITEM

IOAREA=RELB

RELATED-DATA

ITEMCODE=2

ITEMCORD=6

CORDLKOR=8=ITEMCORD

ITEMDATA=69

RECORD-CODE=HD Header record

.1.ITEMCUST=6 Customer key

Using the DDL Load Facility

System Administration Guide 223

CUSTLKHD=8=ITEMCUST Link to CUST primary data set

.1.ITEMHDDT=7

DATELKHD=8=ITEMHDDT

.1.ITEMHEAD=40

RECORD-CODE=IT

.1.ITEMITDT=7

DATELKIT=8=ITEMITDT

DATELKAL=8=ITEMITDT

.1.ITEMPART=6

PARTLKIT=8=ITEMPART

.1.ITEMDESP=6

DESPLKIT=8=ITEMDESP

.1.ITEMINV1=6

INVCLKIT=8=ITEMINV1

.1.ITEMQTYR=4

RECORD-CODE=DN

.1.ITEMDNDT=7

DATELKDN=8=ITEMDNDT

DATELKAL=8=ITEMDNDT

.1.ITEMDSP1=6

DESPLKDN=8=ITEMDSP1

.1.ITEMQTYD=4

.1.ITEMFILL=28

RECORD-CODE=IN

.1.ITEMINDT=00000007

DATELKIN=8=ITEMINDT

Chapter 8 Database migration

224 P25-0132-46

DATELKAL=8=ITEMINDT

.1.ITEMUNIT=5

.1.ITEMVATR=3

.1.ITEMFIL1=20

.1.ITEMINV2=6

INVCLKIT=8=ITEMINV2

.1.ITEMFIL2=4

END-DATA

TOTAL-LOGICAL-RECORDS=20196

LOGICAL-RECORD-LENGTH=85

LOGICAL-RECORDS-PER-BLOCK=12

LOAD-LIMIT=80 Load limit

CONTROL-INTERVAL=204 Control interval

ACCESS MODE=Y

FILE-SPEC=ITEM.QAR/SECTORS=00000012

END-RELATED-DATA-SET

BEGIN-TASK-LOG-DATA-SET

LOG-BLOCKSIZE=1

LOG-BLOCKS=8000

FILE-SPEC=TLOG.QAR

END-TASK-LOG-DATA-SET

BEGIN-FUNCTION-LOG-DATA-SET

LOG-BLOCKSIZE=1

LOG-BLOCKS=500

FILE-SPEC=DUMPSLF_DIR:dumpslf_001

FILE-SPEC=DUMPSLF_DIR:dumpslf_002

END-FUNCTION-LOG-DATA-SET

END-DATA-BASE-GENERATION

Using the DDL Load Facility

System Administration Guide 225

Compiling database description
After you have successfully loaded your database description into the
SUPRA Directory using the csiddlload utility, use the DBA Facilities (or
csmcombat, the batch database compile program) to validate and
compile your database description. (Refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260.)

Formatting data sets
Before you can add records to the newly compiled database, you must
format all files (data sets and recovery log files). Use the DBA
Administration Facilities (or cstufmt) to format the files. Refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260, for details.

Adding records
Before you can use your new database, you must now load your data. As
described in “Migrating into SUPRA Server for UNIX” on page 207, the
data from your source system database was copied into sequential files
that have been transferred to the target system. To add this data into
your newly formatted data sets, use the Utilities option of the DBA
Administrative Facilities. Refer to the SUPRA Server PDM Utilities
Reference Manual (UNIX & VMS), P25-6220, for details. Alternatively,
you may write an application to add the data to the database.

Chapter 8 Database migration

226 P25-0132-46

9
System Administration utilities

This is a new chapter and consists of information pertinent to this
release.

The System Administration utilities provide information that can be used
to help tune databases and PDM systems as well as diagnose problems.
These utilities can be used in conjunction with the DBA utilities to provide
a more complete and concise view of a database.
The following utilities are available:

♦ csistats Print statistics about databases and data sets

♦ dbstat.sh Print statistics about databases and data sets

♦ pdmstats.sh Print statistics gathered by a running PDM

♦ csishoheld Print a report showing the current held records

♦ csidmpanl Print a report showing PDM memory values saved in a
dump analysis file by the PRINT command (csiopcom) or a fatal error

System Administration Guide 227

csistats
The database statistics utility csistats:

♦ Reports physical statistics about selected data sets

♦ Gathers physical database statistics for all data sets in a database

How the utility works
When you run this database statistic utility, it performs the following:

1. Signs on to the database to extract and display a list of all data sets
defined in the database description file.

2. Extracts physical file attributes from the database description file for
the selected data sets.

3. Opens each selected dataset file and scans through all records,
gathering statistical information.

4. Prints a report of the statistical information, in:

- Labeled format for a single data set.

- Tabular format if all data sets were selected.

Chapter 9 System Administration utilities

228 P25-0132-46

How to execute the utility
Execute the database statistics utility using the UNIX command csistats:

♦ Interactively from the UNIX shell.

♦ By executing a UNIX script containing the csistats command and
input parameters (either online or in the background).

This utility prompts for a series of input parameters. The following lists
the parameters and a description of each:

Prompt Parameter Result
Enter database
name:

database-name Enter the name of the database containing the
data sets to be examined. The utility displays a
list of all data sets defined for the database.

Enter file
name:

data-set-name

or

ALL.

Enter either the name of a dataset to be
examined or ALL. to examine all files in the
database.
After reporting on a single dataset, the utility
prompts for another dataset name. When all
data sets are selected, the utility returns
directly to the shell after displaying the report.

You can press ENTER or EOF (usually CTRL-D) at any prompt to terminate
the database statistics utility.

Shell execution
To execute the database statistics utility interactively, enter the command
at the shell prompt and then respond to the prompts for database and
data set names:

$ csistats

Enter database name: suprad

Enter file name: all.

csistats

System Administration Guide 229

Script execution
Create a UNIX script with any text editor. The database and dataset
names are supplied as command parameters to the script. The script can
then be executed either online or in the background.

Refer to the following for an example of creating and executing a script.

Example. The following is the UNIX script do_stats to generate statistics
for a single dataset or all data sets in a database.

do_stats script: executes Database Statistics utility

$1 = database name

$2 = dataset name or all.

if test “$1”=“”

then

 echo “No database name supplied”

else

if test “$2”=“”

then

 echo “No dataset name supplied”

else

csistats <<EOF

$1

$2

EOF

fi

fi

To execute the script online, enter:
$ chmod 744 do_stats

$ do_stats suprad all.

Execute the database statistics script as a background process by
entering:
nohup do_stats suprad all. >stats.log 2>/dev/null &

Chapter 9 System Administration utilities

230 P25-0132-46

This background process directs the report details (standard output) to a
file named stats.log in the current directory and directs informational
messages, prompts and dataset list (standard error) to the null (trashcan)
file.

Example. The following is a sample screen displayed after running the
csistats program online:

$ csistats
CSTU118I Cincom Database Statistics Utility version 2.0
Enter database name: PERSON

DEPT EMPL WHST

Enter file name: all.

CSTU105I Processing file /prod/SMOKE/directory/DEPT.PER
CSTU105I Processing file /prod/SMOKE/directory/EMPL.PER
CSTU105I Processing file /prod/SMOKE/directory/WHST.PER
Database statistics for PERSON run on: 05/05/97

 Total Data Empty Control Percent Load Full File
Name Records Records Records Records Full Limit Status Status
DEPT (P) 10 0 9 1 10.00% ****
EMPL (P) 12 0 11 1 8.33% ****
WHST (R) 110 0 109 1 0.91% 80.00% ****

$csistats
CSTU118I Cincom Database Statistics Utility version 2.0
Enter database name: PERSON

DEPT EMPL WHST

Enter file name: DEPT

CSTU105I Processing file /prod/SMOKE/directory/DEPT.PER
CSTU119I Statistics for dataset DEPT
CSTU120I Records Processed: 10
 File Status: ****
 Empty Records: 9
 Data Records: 0
 Control Records: 1
 Percent Full: 10.00%

Enter file name:

csistats

System Administration Guide 231

The following table lists descriptions of database statistics output fields
for csistats. Field names may change or may not be reported depending
on the file name selected.

Field name Description
Name The dataset name and type:

 (P) Primary
 (R) Related

Records Processed
or Total Records

The total number of records formatted in the
dataset.

Empty Records The number of records currently free for user
data.

Data Records The number of records currently holding
active user data.

Control Records The number of records allocated as file and
cylinder control records.

Percent Full The number of (Data Records + Control
Records) as a percentage of Total Records.

Load Limit The load limit as defined in the database
description file (related data sets only).

Full Status Current file load indicator.
For primary data sets,

♦ If load limit = 0.0, then percent full:
 * = 65% ** = 75% ***= 80%

For related data sets:

♦ If load limit = 0.0, then percent full:
 * = 65% ** = 75% *** = 80%

♦ If load limit = 100.0, then percent full:
 % full + 15> load limit *
 % full + 5 > load limit **
 % full > load limit ***

File Status ****, LOAD, FULL

Chapter 9 System Administration utilities

232 P25-0132-46

dbstat.sh
The database statistics utility dbstat.sh:

♦ Reports physical statistics about all data sets

♦ Gathers physical database statistics for all data sets in a database

How the utility works
This utility is a script which calls two programs:

♦ csidtlprt Runs on the specified database name and displays the
details of all the files

♦ csistats Called to gather the number of records in the file and the
file status

The information is then extracted and printed in report format. The report
prints to dbstat.# (in your working directory if you selected the spread
sheet option) where # is the process ID number (pid).

Be sure you have write permission for the temporary files created in the
/tmp directory.

dbstat.sh

System Administration Guide 233

How to execute the utility
Execute the database statistics utility using the command dbstat.sh
database-name:

♦ Interactively from the UNIX shell

♦ By executing a UNIX script containing the dbstat.sh command and
the command line parameters (either online or in the background)

Usage of the command is:
dbstat.sh [parameters] database-name

For example:
dbstat.sh -x burrys

The following table lists command-line parameters supported by
dbstat.sh; keep in mind that these are case-sensitive:

Parameter Description
- P password Password
- s # Column number to sort (default is 1)
- r # Reverse sort order
- e “file1 file2 …” File(s) to exclude from the output
- i “file1 file2 …” File(s) to include for the output
- t # Number of threads
- l # Number of lines/page on report
- p Format report for printer (66 lines/page)
- n Display report without headers
- x Spreadsheet setup (no headers, no totals, and

comma separated fields)
- h/? Help option lists available parameters to use

Chapter 9 System Administration utilities

234 P25-0132-46

Example. The following is a sample screen displayed after running the
dbstat.sh script online:

dbstat.sh Report
Database prefix:
Database name: burrys

File File File Alloc Used Pct Alloc File Rcd Rcd/ Blk Rcds Load
Name Type Stat Records Records Used Blocks Size (KB) Lgth Blk Size CI Limt
--1- --2- --3- ----4-- ----5-- --6-- ----7-- -----8--- --9- -10- -11- -12- -13-
BRAN P **** 78 0 0.0 3 9 115 26 3072 0 0
BRIN R **** 396 0 0.0 4 16 41 99 4096 198 79
BRMA R **** 124 0 0.0 2 5 41 62 2560 62 90
CUST P **** 120 0 0.0 3 10 89 40 3584 0 0
INVC P **** 210 0 0.0 5 10 48 42 2048 0 0
INVL R **** 525 0 0.0 15 22 43 35 1536 105 80
MANF P **** 78 0 0.0 2 3 39 39 1536 0 0
MANL R **** 138 0 0.0 6 6 44 23 1024 69 79
PGRP P **** 12 0 0.0 1 0 40 12 512 0 0
POLN R **** 260 0 0.0 4 12 47 65 3072 65 76
PORD P **** 140 0 0.0 5 5 36 28 1024 0 0
PROD P **** 126 0 0.0 7 14 111 18 2048 0 0
REGN P **** 16 0 0.0 1 0 31 16 512 0 0
STCK R **** 1776 0 0.0 24 84 48 74 3584 148 79
STRU R **** 444 0 0.0 12 18 41 37 1536 444 79
SUPP P **** 18 0 0.0 1 1 82 18 1536 0 0
VSNO P **** 236 0 0.0 4 12 52 59 3072 0 0
 ------- ------- --------
 4697 0 227

Total files: 17, Primary files: 10, Related files: 7

Sort column: 1

start time Fri Jan 24 10:10:12 EST 1997
end time Fri Jan 24 10:10:30 EST 1997

dbstat.sh

System Administration Guide 235

The following table lists descriptions of database statistics output fields
for dbstat.sh:

Field name Description
Database prefix The prefix symbol.
Database name The name of the database.
File Name The dataset name.
File Type The dataset type

 (P) Primary
 (R) Related

File Stat The file status:
 ****, LOAD, FULL

Alloc Records The number of allocated records. This column
is totaled.

Used Records The number of records currently holding data.
This column is totaled.

Pct Used The percentage used of the allocated records.
Alloc Blocks The number of allocated blocks.
File Size (KB) The file size in kilobytes. This column is totaled.
Rcd Lgth The length of the record.
Rcd/Blk The number of records per block.
Blk Size The block size.
Rcd CI The number of records per control interval.
Load Limt The load limit as defined in the database

description file (related data sets only).

Chapter 9 System Administration utilities

236 P25-0132-46

pdmstats.sh
The PDM statistics utility pdmstats.sh provides statistic reports gathered
from PDM statistics as shown in Appendix B:

♦ Reports PDM statistics from a snapshot

♦ Reports PDM statistics accumulated in PDM log files

How the utility works
There are a number of options when you run pdmstats.sh:

♦ Generate from a snapshot

♦ Generate from an accumulation of statistics from the PDM log file

♦ Generate for a specific database or for all databases

♦ Spreadsheet output prints to the files pdmstatdata.#, pdmstatfile.#,
and pdmstattask.#, in your working directory, where # is the process
ID number (pid)

♦ Formatting options for number of lines per page, remove zero-filled
rows, sorting, and summarization

Be sure you have write permission for the temporary files created in the
/tmp directory.

pdmstats.sh

System Administration Guide 237

How to execute the utility
Execute the PDM statistics utility using the command pdmstats.sh:

♦ Interactively from the UNIX shell

♦ By executing a UNIX script containing the pdmstats.sh command and
the command line parameters (either online or in the background)

The default for pdmstats.sh is the snapshot of the current statistics.

Usage of the command is:
pdmstats.sh [parameters] [database-name]

database-name: ALL or a particular database name. If no database is
specified, ALL is assumed.

Chapter 9 System Administration utilities

238 P25-0132-46

The following table lists command line parameters supported by
pdmstats.sh; keep in mind that these are case-sensitive:

Parameter Description
- D db_name Generates statistics from the PDM log file

to which the CSIPDMLOG logical name
points.

- l # Number of lines/page on report.
- m db_name.ds_name Summarization of a dataset in a database

(only on table file).
- p Format report for printer (66 lines/page).
- r Remove zero-filled rows.
- s “table.# table.# …” Sort according to statistics number and

column number (file.3 sorts table file at
column 3).

- x Spreadsheet setup (no headers, no totals,
and comma separated fields).

- h/? Help option lists available parameters to
use.

Based on the options selected, this utility produces a report on database
statistics and file access, and possibly also task statistics.

Output type Corresponds to the search of:
Data ♦ CSTI055S (database statistics)

♦ CSTI056S (database statistics)
File ♦ CSTI011S (DML file function statistics)

♦ CSTI012S (physical file I/O and miscellaneous
file statistics)

Task ♦ CSTI008S (task sinof statistics)

pdmstats.sh

System Administration Guide 239

Example. The following is a sample screen displayed after running the
pdmstats.sh script with a database specified:

Chapter 9 System Administration utilities

240 P25-0132-46

The following table lists descriptions of PDM statistics output fields for
pdmstats.sh, the database statistics portion:

Field name Description
D_base Database name
Time Time of statistics utility execution
Signons Number of SINON DML functions issued for the

database
Signoffs Number of SINOF DML functions issued for the

database
Dynsinofs Number of dynamic SINOFS issued for the

database
Lfuls Reserved for future use
Dfuls Reserved for future use
Contasks Maximum number of tasks concurrently signed on

to the database
Confuncs Maximum number of functions concurrently issued

to the database
Threads Maximum number of threads concurrently active,

executing a function on the database
Nfilfncs Reserved for future use
Tlfbufstls Number of times a task log file buffer had to be

“stolen”
Conuptsks Maximum number of update tasks concurrently

signed on to the database

pdmstats.sh

System Administration Guide 241

The following table lists descriptions of PDM statistics output fields for
pdmstats.sh, the file access portion:

Statistics output Description
D_base Database name
Dataset Data set of the particular database
Time Time of statistics utility execution
Reads Total number of READ DML functions used on

the file since it was physically opened
Writes Total number of WRITE DML functions used on

the file since it was physically opened
Adds Total number of ADD DML functions used on

the file since it was physically opened
Deletes Total number of DELETE DML functions used

on the file since it was physically opened
Misc Total number of RQLOC DML functions used

on the file since it was physically opened
Total Total number of the statistics (Reads, Writes,

Adds, Deletes, and Misc) per each data set
Preads Number of physical reads performed on the file
Pwrites Number of physical writes performed on the file
Lreads Number of logical read operations performed

on the file
Lwrites Number of logical write operations performed

on the file
Bufsnavl Number of times a logical read function had to

wait for a buffer to be freed
Bflushes Number of times a logical read function had to

flush a buffer in order to use it
Helds Number of times any function issued for this file

had to be retried because of a record hold
Ihelds Number of internal held conditions encountered

Chapter 9 System Administration utilities

242 P25-0132-46

The following table lists descriptions of PDM statistics output fields for
pdmstats.sh, the task statistics portion:

You must select STATISTICS=Y in the PDM input file to generate this
output.

Statistics output Description
D-base Database name
Time Time of statistics utility execution
Reads Total number of READ DML functions

issued by the task
Writes Total number of WRITE DML functions

issued by the task
Adds Total number of ADD DML functions issued

by the task
Deletes Total number of DELETE DML functions

issued by the task
Misc Total number of COMMIT, RESET, SINON,

and SINOF DML functions issued by the
task

Helds Number of times any function issued by this
task had to be retried because of a record
hold

Ihelds Number of internal held conditions
encountered

pdmstats.sh

System Administration Guide 243

csishoheld
The held record utility csishoheld:

♦ Reports the held records for a specified database or all databases

♦ Reports the held records for specified files

♦ Reports the held records for specified tasks

How the utility works
The utility is a script performing the following steps:

♦ Defines the logical name CSI_DMPANL

♦ Executes the PRINT command of csiopcom

♦ Executes the utility csidmpanl that produces an output file

♦ The output file is analyzed by csishoheld, and a report is produced

How to execute the utility
Execute the held record utility using the command csishoheld:

♦ Interactively from the UNIX shell

♦ By executing a UNIX script containing the csishoheld command and
the command line parameters (either online or in the background)

Usage of the command is:
csishoheld [parameters] database-name

For example:
csishoheld burrys

Chapter 9 System Administration utilities

244 P25-0132-46

The following table lists command line parameters supported by
csishoheld; keep in mind that these are case-sensitive:

Parameter Description
-f filelist Restrict listing to data about data sets whose names

are given in filelist
-p proclist Restrict listing to data about processes whose

process ID numbers are given in proclist
-h Print help information to standard output

csishoheld prints information from the record holding table for a
database. If no options are specified, information for all currently held
records is printed. The output consists of process details, data set name,
and RRN.

The database-name argument specifies the database whose record
holding table is to be examined. The information displayed can be
controlled by the selection of options. Options using lists as arguments
can have the list specified in one of two forms:

♦ A list of identifiers separated from one another by a comma

♦ A list of identifiers enclosed in double quotes and separated from one
another by a comma and/or one or more spaces

csishoheld

System Administration Guide 245

Example. The following is a sample output after running csishoheld with
no options:

PID USER TID TASKNAME COMMAND
9171 csi 0005 TESTER01 csichckr
 DATASET: EMPL
 RRNs HELD: 00000001

Things can change while csishoheld is running; the picture it gives is only
a snapshot in time.

Write access to the current working directory is required as csishoheld
creates temporary files in this location.

Chapter 9 System Administration utilities

246 P25-0132-46

csidmpanl
The dump analysis utility csidmpanl:

♦ Displays information that is stored in memory assigned to a database

♦ Can be executed stand-alone, or within the csishoheld script

How the utility works
This utility requires the following steps be performed:

1. The logical name CSI_DMPANL must be defined to PDM using the
csideflog function. This logical name must specify a full pathname for
the file that will contain the dumped information.

2. When the snapshot is to be taken, run csiopcom against an active
database and specify the PRINT option. If the logical name
CSI_DMPANL is not defined, the file “CSI_DMPANL” will be created
in the directory from which the PDM was started.

 The file specified by the logical name CSI_DMPANL will be
generated. This file can also be generated by a FATAL PDM error.
csidmpanl can be used to analyze the file from either source.

3. csidmpanl is an interactive utility prompting the user for an output file
name. Following this, the user will respond with Y or N to 12 tables to
be dumped.

csidmpanl

System Administration Guide 247

How to execute the utility
Consider the following:

♦ Execute the dump utility by using the command csidmpanl

♦ Usage of the command is:
csidmpanl

♦ You will be prompted for an output file name, along with prompts for
each table that is to be dumped

The following table lists the 12 tables that may be dumped:

Table Description
TTE Task Table for each TASK
TTC Thread Context
TDP DBMOD
TGF File Table
TEB Extent Block
TEL Element Table for each File
TVL Linkpath Table for each File
Buffers Buffers for each file
TRH Record Holding Table
TSC Schema for each Task
TLM Task Log allocation map
TLL Task Log block group chain

csidmpanl will search the file pointed to by the logical name
CSI_DMPANL for information about the tables requested. The formatted
output will be placed in the output file name. The report will contain
internal PDM information for each table. This will contain the address in
memory of each table, with addresses of areas within each table. This
information is used by Cincom Support to analyze a PDM system. In
addition, the csishoheld utility uses the information to prepare a formatted
report on held records.

Chapter 9 System Administration utilities

248 P25-0132-46

A
Example user exits

This appendix presents example user exits written in COBOL and
FORTRAN. The COBOL example uses both the before and after exits;
the FORTRAN example uses only the after exit. Command files for
compiling and linking both examples are provided at the end of each
section.

COBOL user exits
The COBOL user exits trace DML parameters to check that they are
being passed correctly between the application program and the PDM.
The before exit displays the parameters before the call to the PDM. The
after exit displays the parameters after the call to the PDM. In addition,
the after exit shows the status of each DML call. The traced DML
functions are ADDVA, ADDVB, ADDVC, DELVD, READR, and READV.

System Administration Guide 249

COBOL user exit 1
Identification division.
Program-id. CSI_INTUSEREX1.
*
* This Before exit traces calls to most
* Related DML functions to SUPRA User database files.
*
Data Division.
*
Working-storage Section.
*
01 i Pic s9(4) Comp.
*
01 key-dec.
 03 key-dec-1 Pic 9(8).
 03 key-dec-2 Pic 9(8).
*
01 key-character.
 03 key-char Pic x Occurs 8.
*
01 refer.
 03 refer-char Pic x Occurs 4.
*
Linkage Section.
*
01 function Pic x(5).
01 stat Pic x(4).
01 data set.
 03 udd Pic x(3).
 03 filler Pic x.
01 param-4.
 03 master-key-1 Pic s9(9) Comp.
 03 master-key-2 Pic s9(9) Comp.
01 linkpath Pic x(8).
01 param-6.
 03 data-1 Pic s9(9) Comp.
 03 data-2 Pic s9(9) Comp.
Procedure Division Using function, stat, data
set,param-4,linkpath,param-6.

s1 Section.
*
s.
* Skip calls to DIR DB
If udd = ''UDD'' Go To b.
* Test function type
 If function = ''ADDVA'' Or ''ADDVB'' Or ''ADDVC'' Or
 ''DELVD'' Or ''READR'' Or ''READV''
 Go To rela-set.
*
* other function
*
 Go To b.
*
rela-set.
*
* make key parameter hexadecimal for first 8 bytes.
 Move data1 to key-dec-1
 Move data2 to key-dec-2*
 Move param-6 To key-character.
 Perform convert-refer.
 Move master-key-1 To refer.
 Perform convert-hex-refer.

Appendix A Example user exits

250 P25-0132-46

 Display ''B '' ,function,'' '',data set,'' Ref:'',
 master-key-1 conversion,''='', refer, '' '',linkpath,'' Key
1-8:''

 key-dec-1, '' '',key-dec-2, ''='',key-character. text

*
b.
 Exit Program.
*
convert-key Section.
s.
 Perform do-it Test Before Varying i From 1 By 1 until i > 8.
 Go To e.
do-it.
 If key-char(i) Not Numeric And key-char(i) Not Alphabetic
 Move ''.'' To key-char(i).
e.
 Exit.
*
convert-key-refer Section.
s.
 Perform do-it Test Before Varying i From 1 By 1 until i > 4.
 Go To e.
do-it.
 If refer-char(i) Not Numeric And refer-char(i) Not Alphabetic
 Move ''.'' To refer-char(i).
e.
 Exit.

COBOL user exit 2
Identification division.
Program-id. CSI_INTUSEREX2.
*
* This After exit traces calls to most
* Related DML functions to SUPRA User database files.
*
Data Division.
*
Working-storage Section.
*
01 i Pic s9(4) Comp.
*
01 key-dec.
 03 key-dec-1 Pic 9(8).
 03 key-dec-2 Pic 9(8).
*
01 key-character.
 03 key-char Pic x Occurs 8.
*
01 refer.
 03 refer-char Pic x Occurs 4.
*
Linkage Section.
*
01 function Pic x(5).
01 stat Pic x(4).
01 data set.
 03 udd Pic x(3).
 03 filler Pic x.
01 param-4.
 03 master-key-1 Pic s9(9) Comp.

COBOL user exits

System Administration Guide 251

 03 master-key-2 Pic s9(9) Comp.
01 linkpath Pic x(8).
01 param-6.
 03 data-1 Pic s9(9) Comp.
 03 data-2 Pic s9(9) Comp.
/
Procedure Division Using function, stat, data
set,param-4,linkpath,param-6.

s1 Section.
*
s.
* Skip calls to DIR DB
If udd = ''UDD'' Go To b.
* Test function type
 If function = ''ADDVA'' Or ''ADDVB'' Or ''ADDVC'' Or
 ''DELVD'' Or ''READR'' Or ''READV''
 Go To rela-set.
*
* other function
*
 Go To b.
*
rela-set.
*
* make key parameter hexadecimal for first 8 bytes.
*
 Move data1 to key-dec-1
 Move data2 to key-dec-2
 Move param-6 To key-character.
 Perform convert-hex.
 Move master-key-1 To refer.
 Perform convert-hex-refer.
 Display ''A '' ,function,'' '',data set,'' '',stat,'' Ref:'',
 master-key-1 conversion,''='', refer, '' '',linkpath,'' Key
1-8:''

 key-hex-1, '' '',key-hex-2, ''='',key-character. text
*
b.
 Exit Program.
*
convert-key Section.
s.
 Perform do-it Test Before Varying i From 1 By 1 Until i > 8.
 Go To e.
do-it.
 If key-char(i) Not Numeric And key-char(i) Not Alphabetic
 Move ''.'' To key-char(i).
e.
 Exit.
*
convert-refer Section.
s.
 Perform do-it Test Before Varying i From 1 By 1 Until i > 4.
 Go To e.
do-it.
 If refer-char(i) Not Numeric And refer-char(i) Not Alphabetic
 Move ''.'' To refer-char(i).
e.
 Exit.

Appendix A Example user exits

252 P25-0132-46

COBOL command file to compile and link the exits
$!

$! Command file to compile and link the sample COBOL PDM User
Exit.

$!

$! Compile user exit 1 or Before Exit

$Cobol/noansi csi_pdm_exit1

$!

$! Compile User exit 2 or After Exit.

$Cobol/noansi csi_pdm_exit2

$!

$! Link the two compiled objects to form an Executable

$! Image. Note that the names of the exits, CSD_UPDM_USEREX1

$! and CSD_UPDM_USEREX2 MUST be declared as UNIVERSAL

$! symbols.

$!

$! To activate the User exits, do the following before

$! running your SUPRAPDM Applications :

$! $DEFINE CSI_USEREX dev:_[directory_]CSI_PDM_EXIT.EXE

$!

$Link/share=csi_pdm_exit.exe csi_pdm_exit1, csi_pdm_exit2, -

sys$input/option

universal=CSD_UPDM_USEREX1,CSD_UPDM_USEREX2

COBOL user exits

System Administration Guide 253

FORTRAN user exit
The FORTRAN user exit traces the primary and related user database
functions to check that the DML parameters are passed correctly
between the application program and the PDM. As this example shows,
you do not need to use both before and after exits.

FORTRAN user exit
 subroutine csd_updm_userex2(p1,p2,p3,p4,p5,p6)

c

c SUPRAPDM After Exit example :

c This sample Fortran program traces some of the parameters

c after making a DML call to the user database files.

c

c

c Note that this exit uses Numeric dummy arguments

c because they are passed by reference from the PDM.

c Dummy Numeric arguments may not be Equivalenced to character

c strings, thus the mapping of the arguments from numerical

c addresses to character strings are done in two steps.

c

 implicit none

 character*5 function

 character*4 stat, data set

 character*8 linkpath

 real*8 p1,pp1

 integer*4 p2,p3,pp2,pp3

 real*8 p4,p5,pp5,p6

 equivalence (pp1,function),(pp2,stat)

 equivalence (pp3,data set),(pp5,linkpath)

c

c

 pp1=p1

 pp2=p2

 pp3=p3

Appendix A Example user exits

254 P25-0132-46

c

c Ensure we only trace calls to user databases by examining
the

c data set argument - this parameter is only available if it
is

c one of a data set access functions.

c

 if (((function .eq. 'ADD-M') .or.

1 (function .eq. 'DEL-M') .or.

2 (function .eq. 'READM') .or.

3 (function .eq. 'WRITM')) .and.

4 (data set .ne. 'UDD1') .and.

5 (data set .ne. 'UDD2') .and.

6 (data set .ne. 'UDD3')) goto 20

c

 if (((function .eq. 'ADDVA') .or.

1 (function .eq. 'ADDVB') .or.

2 (function .eq. 'ADDVC') .or.

3 (function .eq. 'ADDVR') .or.

4 (function .eq. 'DELVD') .or.

5 (function .eq. 'READD') .or.

6 (function .eq. 'READR') .or.

7 (function .eq. 'READV') .or.

8 (function .eq. 'WRITV')) .and.

9 (data set .ne. 'UDD1') .and.

1 (data set .ne. 'UDD2') .and.

2 (data set .ne. 'UDD3')) goto 30

c

c Ignore the rest of the functions

 goto 99

c

20 write (*,100) function,stat,data set,p4

 goto 99

30 pp5=p5

 write (*,110) function,stat,data set,linkpath,p6

99 return

c

100 format (' ',A5,' ',A4,' ',A4,' ',Z16)

110 format (' ',A5,' ',A4,' ',A4,' ',A8,' ',Z16)

 end

FORTRAN user exit

System Administration Guide 255

FORTRAN command file to compile and link the exit
$!

$! Command file to compile and link the sample FORTRAN PDM User
Exit

$!

$! Please note that this example uses only the After exit

$!

$! Compile the Fortran program containing the After Exit.

$ FOR CSI_PDM_EXIT_FOR

$!

$! Link the compile object to form an Executable Image.

$! Note that the name of the exit, CSD UPDM EXIT2 MUST be
declared

$! as UNIVERSAL Symbol.

$!

$! To activate the User Exit, do the following before running
your

$! SUPRAPDM applications :

$!

$! $DEFINE CSI_USEREX_dev:_[directory_]CSI_PDM_EXIT_FOR.EXE

$!

$! To deactivate the exit, DEASSIGN the logical name CSI_USEREX.

$Link/share=CSI_PDM_EXIT FOR.EXE
CSI_PDM_EXIT_FOR.OBJ,sys$input/opt

UNIVERSAL=CSD_UPDM_USEREX2

GSMATCH=ALWAYS,0,0

$!

Appendix A Example user exits

256 P25-0132-46

B
PDM statistics output

This appendix describes the statistics written to the log file when you
select STATISTICS=Y in the PDM input file.

Task statistics
The PDM produces this message whenever a task signs off:
CSTI008S (database), (process-name), (task-id), TASK SINOF

STATISTIC

READS WRITES ADDS DELETES MISC HELDS IHELDS

(reads) (writes) (adds) (deletes) (misc) (helds) (int helds)

The columns have the following meaning:

READS The total number of READ DML functions issued by the task.

WRITES The total number of WRITE DML functions issued by the task.

ADDS The total number of ADD DML functions issued by the task.

DELETES The total number of DELETE DML functions issued by the task.

MISC The total number of COMIT, RESET, SINON, and SINOF DML functions
issued by the task.

HELDS The number of times any function issued by this task had to be retried
because of a record hold. For example, if a function attempts to access a
record that is already held for update, that function is backed out, a hold
request is added to the queue for that record and the function is placed in
the retrying queue. When the record is free, the function is transferred to
the allocating queue ready to be restarted.

IHELDS The number of internal held conditions encountered. In practice, this
value is the same as the HELDS column except that in this case the
function was able to restart immediately instead of waiting in the retrying
queue.

System Administration Guide 257

File statistics
The PDM produces this message whenever it physically closes a file. A
file is physically closed when the last task to use it issues a logical close
for that file. This could be as the last task signs off during normal
processing or as a result of an operator command to close down the
database or the PDM (SHUTDOWN, UNLOAD).
CSTI011S (database), (data-set), DML FILE FUNCTION STATISTICS,

READS WRITES ADDS DELETES MISC

(reads) (writes) (adds) (deletes) (misc)

The columns have the following meaning:

READS The total number of READ DML functions used on the file since it was
physically opened.

WRITES The total number of WRITE DML functions used on the file since it was
physically opened.

ADDS The total number of ADD DML functions used on the file since it was
physically opened.

DELETES The total number of DELETE DML functions used on the file since it was
physically opened.

MISC The total number of RQLOC DML functions used on the file since it was
physically opened.

Appendix B PDM statistics output

258 P25-0132-46

CSTI012S (database), (data-set), PHYSICAL FILE I/O & MISC FILE
STATISTICS,

BUFSNAVL BFLUSHES PREADS PWRITES

(buf not avail) (buf flushes) (phys reads) (phys writes)

LREADS LWRITES HELDS IHELDS

(logical reads) (logical writes) (helds) (int helds)

The columns have the following meaning:

BUFSNAVL The number of times a logical read function had to wait for a buffer to be
freed.

BFLUSHES The number of times a logical read function had to flush a buffer in order
to use it. A read function first searches the pool of buffers for the record.
If the record is not there, the read function searches for an empty buffer
to use. If no empty buffer is available, the read function searches for an
unlocked buffer. A BFLUSH occurs when an unlocked buffer is found that
contains modified records that must be flushed before the buffer can be
used.

PREADS The number of physical reads performed on the file. A physical read
reads in as much of the file as can be contained in one buffer. In VMS,
for example, 25 physical reads would be needed to read a file that has 50
VMS sectors and a buffer size of 1024 bytes. If a file has too few buffers,
or if the buffers are too small, then the number of physical reads needed
increases.

PWRITES The number of physical writes performed on the file. Normally, this value
equals the number of BFLUSHES plus the number of buffers.

LREADS The number of logical read operations performed on the file. The target
of a logical read is one database record that may be found in one of the
buffers for the file. A physical read is performed if the database record is
not found in a buffer. The number of logical reads should, therefore,
greatly exceed the number of physical reads. The number of logical
reads should also exceed the number of DML functions since, for
example, one ADDVR could generate three or four logical reads.

File statistics

System Administration Guide 259

LWRITES The number of logical writes used on the file. Currently, this column gives
useful figures only for the task log and system log.

HELDS The number of times any function issued for this file had to be retried
because of a record hold. For example, if a function attempts to access a
record that is already held for update, that function is backed out, a hold
request is added to the queue for that record, and the function is placed
in the retrying queue. When the record is free, the function is transferred
to the allocating queue ready to be restarted.

IHELDS The number of internally held conditions encountered. In practice, this
value is the same as the HELDS column except that, in this case, the
function restarted immediately instead of waiting in the retrying queue.

Appendix B PDM statistics output

260 P25-0132-46

Database statistics
The PDM produces this message when the last task signs off from the
specified database.
CSTI055S (database), DATABASE STATISTICS,

SINONS SINOFS DYNSINOFS LFULS DFULS

(sinons) (sinofs) (dynamic sinofs) (lfuls) (dfuls)

The columns have the following meaning:

SINONS The number of SINON DML functions issued for the database.

SINOFS The number of SINOF DML functions issued for the database.

DYNSINOFS The number of dynamic SINOFS issued for the database. Dynamic
SINOFS include applications that exit without signing off or applications
that are signed off as a result of an operator command.

LFULS Reserved for future use.

DFULS Reserved for future use.

Database statistics

System Administration Guide 261

CSTI056S (database), DATABASE STATISTICS,

CONTASKS CONFUNCS THREADS NFILFNCS TLFBUFSTLS CONUPTSKS

nnnnnn nnnnnn nnn nnnnnn nnnnnn nnnnnn

The columns have the following meaning:

CONTASKS The maximum number of tasks concurrently signed on to the database.

CONFUNCS The maximum number of functions concurrently issued to the database.
Since a task may issue only one function at a time, the CONFUNCS
figure should be less than or equal to the CONTASKS figure.

THREADS The maximum number of threads concurrently active, executing a
function on the database.

NFILFNCS Reserved for future use.

TLFBUFSTLS The number of times a Task Log File (TLF) buffer had to be “stolen.”
When a thread attempts to acquire a TLF buffer, it first tries to get a free
buffer. If none are available, the task must steal a buffer that is not
currently locked after first flushing it.

CONUPTSKS The maximum number of update tasks concurrently signed on to the
database.

Appendix B PDM statistics output

262 P25-0132-46

C
Example mailbox read program

This appendix presents a C program to read the PDM messages from a
named pipe. In this example, the mailbox is SUPRA1-000114,
constructed using the equivalence name for CSI_PDMID (SUPRA1 in
this case) and the group in which the PDM is running (000114 in this
case). Substitute your own mailbox name to use this program.

Before you can read PDM messages from a mailbox you must do the
following:

♦ Set the PDM input file parameter MRELAY=Y to send all PDM
messages from CSIPDM to your mailbox

♦ Define the logical name CSI_MRELAY to send all console messages
from CSIDAP to your mailbox

See “Writing your own interface to SUPRA Server PDM” on page 154 for
a detailed description of how to write a user interface to SUPRA Server
PDM.

System Administration Guide 263

Example mailbox read program, MAIL-BOX-TRAP.C
/***/

/* MESSAGE_READ */

/* */

/* Sample program to read messages sent by the PDM to a named */

/* pipe */

/***/

#include <stdio.h>

main ()

{

char pipe_name[] = "SUPRA1_000114"; /* Name of pipe */

int pipe_fd; /* Pipe file descriptor */

char message_buf[1024]; /* Buffer for message */

/* Open the named pipe */

if (pipe_fd== -1)

{

 printf ("\nCannot open pipe %s, pipe_name) ;

 return;

}

else

 /* Keep reading data */

 while (read (pipe_fd, message_buf, 1024) != -1)

 printf ("%s", message_buf) ;

return;

}

Appendix C Example mailbox read program

264 P25-0132-46

Index

A

accessing files on a network 167
activate, PDM operator command

123
adding records, during migration

226
analyzing a PDM system 248
application programs, designing

190
automatic PDM initiation

brief description 83
creating an input file for 96
creating initiation file for 88
understanding 111

automatic restart, PDM 19

B

blocking factors 169
blocksize, calculating to optimize

performance 168
buffer search algorithms 183
buffers

improving database
performance with 183

managing 181

C

chains
avoiding fragmentation 169
linkpath 173
synonym 168

change files 77
CHANGEDB, using on UDD files

77
character set conversion 208
coded records 174
commits, optimizing frequency of

193
communicating with the PDM

using csiopcom 153

concurrent mode, multiple single-
task PDM 117

connecting to a remote PDM
using csistr 63

console, displaying PDM
messages at 97

contiguous disk files 169
control interval 172
controlling the PDM

PDM operator commands 122
CSI_AUTOSTART

enabling/disabling PDM start-
up 107

PDM initiation parameter 93,
107

CSI_CONSOLE, to identify PDM
console 162

CSI_MRELAY 154, 263
CSI_PDMID 84

defining logical name 108
PDM initiation parameter 108

CSI_SYSPDMID
defining logical name 110
PDM initiation parameter 110

csiddlload, checking error
conditions 219

csidmpanl dump analysis utility
247

performance 247
running 248
synopsis 248
tables 248

csidtlprt 233
csihelp 203
csioauth, to give access to PDM

commands 159
csiopcom

displaying online help 150
displaying pop-up menus 151
function key support 149
list command 152
quit command 153
set command 153

CSIOPCOM
using 120

CSIOPCOM_AUTH, to give
access to PDM commands
159

csipdm 111
csipdm_debug 111
CSIPDMINP, identifying PDM

input file 90
CSIPDMLOG, identifying PDM

log file 90

System Administration Guide 265

csireply command, setting up
163

csireply, using 120
csishoheld held record rtility

synopsis 244
csishoheld held record utility 244

performance 244
running 244
script example 246
supported options 245

csistats
UNIX command 229

csistats database statistics utility
228

input parameters 229
output descriptions 232
performance 228
program example 231
running 229
script example 230
script execution 230
shell execution 229
submitting script as background

process 230
terminating 229

csistr, connecting to a remote
PDM 63

D

daemon processes, starting 53
Data Definition Language (DDL)

checking error conditions 219
generating files 209
initiating 212
loading DDL files 213
output file messages 219
sample input file 220
status codes 219
using the DDL Load Facility

226
data item lists 198
data set, sizes for Directory 71
database

compiling 21
disabling 130
displaying status of 130
dumping log of 133
migration 213
populate 137
prefix 94

prefix applied to preferred
machine list 92

print 139
printing 21
shutdown 142
specifying read-only access for

140
unloading 144
update 146

database statistics utility
csistats 228

input parameters 229
output descriptions 232
performance 228
program example 231
running 229
script example 230
script execution 230
shell execution 229
submitting script as

background process 230
terminating 229

dbstat.sh 233
output fields 236
performance 233
running 234
script example 235
supported options 234
synopsis 234

DATABASE-DESCRIPTIONS,
user name 72

DATA-DICTIONARY, user name
72

data-set buffering 185
DBA functions 20
DBA utilities, to modify UDD files

80
dbname_CSI_PDM_MACS,

identifying a preferred
machine list 92

dbstat.sh database statistics
utility 233

output fields 236
performance 233
running 234
script example 235
supported options 234
synopsis 234

deactivate, PDM operator
command 125

deadly embrace, recovery from
193

Index

266 P25-0132-46

debug binary, pointing to 111
defining logical name

CSI_PDMID 108
CSI_SYSPDMID 110

directory 21
changing database definition

73
data set sizes 71
database structure(F) 70
describing 70
maintenance 20
modifying 74
setting up 69

disable, PDM operator command
127, 130

disk files, keeping contiguous
169

displaying details of all files,
csitlprt 233

do_stats, UNIX script 230
dump analysis utility, csidmpanl

247
performance 247
running 248
synopsis 248
tables 248

dump system log 133
dumpslf, PDM operator

command 133
dynslock, PDM input parameter

98

E

enable, PDM operator command
135

enabling/disabling automatic
PDM start

CSI_AUTOSTART 107
environmental variables, defining

37
error log file, for the PDM 112
examples

fast utilities on UDD files 78
mailbox read program

in C 264
in pseudocode 155

PDM initiation command file 88
PDM input file 106

F

fast utilities
description 21
using to alter Directory data

sets 78
file density 168
files, accessing on network 167
format functions 21
fragmentation, how to avoid 169

G

gathering number of records in
file 233

generating the DDL 209

H

hashcnt, setting 99
held record utility

csishoheld 244
performance 244
running 244
script example 246
supported options 245
synopsis 244

help text, from csiopcom 150

I
I/O performance 181
index file, populating 137
indexes, improving database

performance with 188
initial load performance 182
initiating

csiopcom 148
SUPRA Server 81
the PDM 82
the PDM(F) 87

input file, to the PDM
creating 96
example 106

interval, setting 99

Index

System Administration Guide 267

K

keyed access 170

L

linked lists 171
linkpath, chains 173
list command 152
load limit 172
load performance, initial 182
locating the csipdm binary image

111
logical name values, displaying

49
logical names

creating 44
defining 45
deleting 51
displaying 47
implementing 38
modifying 52
required for PDM initiation 84

logical records per block 168

M

mailbox read program
pseudocode 155

MANTIS 22
manual PDM initiation 82
maxdata, setting 100
MAXTASKS 33
maxtasks, setting 100
maxthreads, setting 101
migration, database

adding records 226
basic steps 205
DDL loading 213
formatting data sets 226
SUPRA Server

from 208
into 207

modifying privileges 60
modifying SUPRAD files

using DBA utilities 80
using Fast utilities 78

modifying system parameters
for files 32
for message queues 33
for semaphores 32
for shared memory 30

mrelay, to redirect PDM console
messages 101, 263

MSGTQL 33
multihold 102
multiple single-task PDM, in

concurrent mode 117
multitask PDM 18, 36

N

network, PDM access 19, 167
nonkey data 170
null (trashcan) file 231

O

online help 150
operator, identifying 102
out-of-block synonyms 168

P

packing density 168
parameters, UNIX file system

166
PDM input parameters

console 97
dynslock 98
hashcnt 99
interval 99
maxdata 100
maxtasks 100
maxthreads 101
mrelay 101, 263
multihold 102
operator 102
pdmname 102
protcheck 103, 104
retry 104
signal_trap 105
statistics 105
sysopcom 106
timeout 106

Index

268 P25-0132-46

PDM operator commands
activate 122, 123
controlling the PDM 122
deactivate 122, 125
disable 122, 127, 130
display 122
dumpslf 122, 133
enable 122, 135
entering 120
populate 122, 137
print 139
readonly 122, 140
shutdown 122, 142
unload 122, 144
update 122, 146
using csiopcom 120
using csireply 120

PDM statistics utility, pdmstat.sh
237

default 238
output fields 241
performance 237
running 238
script example 240
supported options 239
synopsis 238

pdmname 102
pdmstats.sh PDM statistics utility

237
default 238
output fields 241
performance 237
running 238
script example 240
supported options 239
synopsis 238

Physical Data Manager (PDM)
access 18
automatic initiation 83, 111
CSI_AUTOSTART 93, 107
CSI_PDMID 108, 110
CSIPDM 93
CSIPDMINP 90
CSIPDMLOG 90
error log file 112
example

initiation 85
input parameter file 106

files used during initiation(F) 87

initiation command file 88
input file 96
logical names required 84
manual initiation 82
network support 167
statistics 105, 131, 135

physical database tuning 167
populate, PDM operator

command 137
populating an index file 137
preferred machine list 92
prefix, using 94
primary data set usage 170
primary linkpaths 173
primary record size 170
print, PDM operator command

139
privilege, file

adding users 59
creating 58
displaying details 62
maintaining 56
modifying 58, 60
removing users 61
understanding 57

production binary, pointing to 111
protcheck 103, 104

Q

quit command 153

R

read-ahead buffering 193–97
readonly, PDM operator

command 140
record codes 174
record holding 178

explicit 176
implicit 175
managing in application

programs 191
managing within the PDM 178
uncommitted 177

record holding, minimizing 192
record retrieval, optimizing 167
records-per-block 168, 181
redundant data items 174

Index

System Administration Guide 269

related data sets, using 171
Relative Record Number (RRN)

167
remote PDMs, connecting to 63
restarting the PDM 111
retry 104

S

semaphores 30
SEMMNU 30
set command 153
shadow recording 18
shutdown, PDM operator

command 142
signal_trap, setting 105
single-task PDM 18, 117

initiating 117
single-task PDM modes 117
starting up the PDM 81, 88
statistics, for the PDM 105, 131
stats.log 231
status codes 219
SUPRA Server

components and related
products 17

error messages 219
network support 167

SUPRAD 70
synonym chains 168
sysopcom, controlling method of

communication with the
PDM 106

system level recovery 18
system log dumping 133
system parameters, modifying

for files 32
for message queues 33
for semaphores 32
for shared memory 30
general information about 24

T

task level recovery 18
tasks, displaying status of 130
timeout, setting 106
tuning guidelines 167

U

UDD files 72
modifying 74
using DBA utilities on 80
using fast utilities on 78

UNDO 30
UNIX command, csistats 229
UNIX file system parameters 166
UNIX script, do_stats 230
unload, PDM operator command

144
update, PDM operator command

146
user authorization file, for PDM

commands 159
user exits

COBOL example 253
external 68
internal 66

users
adding new 59
displaying privileges of 62
maintaining privileges 56
modifying 60
names 72
removing, from privilege file 61

utilities
csidmpanl dump analysis utility

247
performance 247
running 248
synopsis 248
tables 248

csishoheld held record utility
244

performance 244
running 244
script example 246
supported options 245
synopsis 244

Index

270 P25-0132-46

utilities (cont.)
csistats database statistics

utility 228
input parameters 229
output descriptions 232
performance 228
program example 231
running 229
script example 230
script execution 230
shell execution 229
submitting script as

background process 230
terminating 229

dbstat.sh database statistics
utility 233

output fields 236
performance 233
running 234
script example 235
supported options 234
synopsis 234

pdmstats.sh PDM statistics
utility

script example 240
pdmstats.sh PDM statistics

utility 237
default 238
output fields 241
performance 237
running 238
supported options 239
synopsis 238

UTILITIES user name 72

W

write permission 184, 233, 237

Index

System Administration Guide 271

Index

272 P25-0132-46

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Overview of SUPRA Server
	The Physical Data Manager
	The Directory
	MANTIS

	Chapter 2 - Setting up UNIX to run SUPRA Server
	Modifying UNIX system parameters
	Modifying system parameters for shared memory
	Modifying system parameters for semaphores
	Modifying system parameters for files
	Modifying system parameters for message queues

	Installing SUPRA Server PDM
	Defining environment variables
	Implementing logical names
	Creating logical name tables
	Defining logical names
	Displaying logical names
	Displaying logical name values
	Deleting logical names
	Modifying logical names

	Starting daemon processes
	Removing wasted resources (csitidy)
	Maintaining user privileges (csichkpriv)
	Understanding user privileges
	Creating and modifying the privilege file
	Adding a new user (ADD)
	Modifying privileges (MODIFY)
	Removing a user from the privilege file (REMOVE)
	Displaying user details within the privilege file (DISPLAY)

	Connecting to a remote PDM—client/server (csistr)
	Enabling communication between processes and nominated operators (csioper)
	Writing SUPRA Server PDM user exits
	Internal user exits
	External user exits

	Chapter 3 - Setting up the Directory
	Describing the Directory database
	Estimating Directory data set sizes
	Setting up Directory user names

	Changing the definition of the Directory database
	Modifying the Directory
	Modifying the Directory data sets
	Using Fast utilities on UDD files
	Using DBA utilities on UDD files

	Chapter 4 - Initiating the SUPRA Server Physical Data Manager
	How to enable the multitask SUPRA PDM
	Manual PDM initiation
	Automatic PDM initiation
	Logical names

	Creating a PDM initiation script
	Using a database prefix
	Creating a PDM input file
	Enabling/disabling automatic PDM startup (CSI_AUTOSTART)
	Defining the logical name for the PDM (CSI_PDMID)
	Defining the logical name for a multiple systemwide PDM (CSI_SYSPDMID)
	Understanding automatic PDM startup
	Single-task PDM
	Concurrent mode
	Stand-alone mode

	Chapter 5 - Communicating with the SUPRA Server PDM
	Entering PDM operator commands
	Controlling the PDM with operator commands
	Activating an index (ACTIVATE)
	Deactivating an index (DEACTIVATE)
	Disabling a database (DISABLE)
	Displaying a database (DISPLAY)
	Dumping a database (DUMPSLF)
	Enabling a database (ENABLE)
	Populating an index (POPULATE)
	Printing PDM memory (PRINT)
	Setting a database to READONLY access (READONLY)
	Shutting down a database (SHUTDOWN)
	Unloading a database (UNLOAD)
	Setting a database to UPDATE access (UPDATE)

	Communicating with SUPRA Server PDM using csiopcom
	Writing your own interface to SUPRA Server PDM
	Restricting usage of PDM commands using the csioauth program
	Communicating with the PDM using the csireply command
	Setting up the csireply command
	Using the csireply command

	Chapter 6 - Tuning your database
	System tuning
	Tuning your physical database
	Accessing files on a network
	Optimizing primary record retrieval
	Avoiding fragmented files
	Avoiding fragmented chains
	Using primary data sets
	Using related data sets
	Defining the control interval and load limit
	Establishing the primary linkpath
	Using coded records
	Evaluating redundant data items

	Managing record holding
	Recommendations for managing record holding

	Defining logical units of work
	Managing buffers
	Improving database performance with buffers
	Understanding buffer search algorithms
	Optimizing data-set buffering

	Tuning PDM process memory
	CONTROL: Manufacturing tuning considerations
	Improving database performance with indices

	Designing application programs
	Record holding
	Managing record holding
	Recovering from a deadly embrace
	Optimizing the frequency of commits
	Understanding read-ahead buffering
	Context position considerations
	Application programming considerations
	Turning off read-ahead buffering
	Turning on read-ahead buffering
	Printing read-ahead buffer statistics
	Remote application considerations
	Performance tuning using the MAXDATA PDM input parameter

	Controlling data item lists

	Chapter 7 - Using the UNIX online Help facility
	Entering the csihelp command
	Using csimkhlp to create a Help file and Help index

	Chapter 8 - Database migration
	Migrating into SUPRA Server for UNIX
	Migrating from SUPRA Server for UNIX
	Generating a DDL file
	Using the DDL Load Facility
	Signing on to csiddlload
	Loading the DDL file
	Checking csiddlload error conditions
	Sample DDL input file

	Compiling database description
	Formatting data sets
	Adding records

	Chapter 9 - System Administration utilities
	csistats
	How the utility works
	How to execute the utility
	Shell execution
	Script execution

	dbstat.sh
	How the utility works
	How to execute the utility

	pdmstats.sh
	How the utility works
	How to execute the utility

	csishoheld
	How the utility works
	How to execute the utility

	csidmpanl
	How the utility works
	How to execute the utility

	Appendix A - Example user exits
	COBOL user exits
	COBOL user exit 1
	COBOL user exit 2
	COBOL command file to compile and link the exits

	FORTRAN user exit
	FORTRAN user exit
	FORTRAN command file to compile and link the exit

	Appendix B - PDM statistics output
	Task statistics
	File statistics
	Database statistics

	Appendix C - Example mailbox read program
	Index

